Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (6): 348-351.doi: 10.3760/cma.j.cn371439-20221218-00069
• Reviews • Previous Articles Next Articles
Received:
2022-12-18
Revised:
2023-01-01
Online:
2023-06-08
Published:
2023-07-11
Contact:
Yang Yu,Email:Liu Yanying, Yang Yu. Role of ANGPTL4 in tumorigenesis and development[J]. Journal of International Oncology, 2023, 50(6): 348-351.
[1] |
Fernández-Hernando C, Suárez Y. ANGPTL4: a multifunctional protein involved in metabolism and vascular homeostasis[J]. Curr Opin Hematol, 2020, 27(3): 206-213. DOI: 10.1097/MOH.0000000000000580.
doi: 10.1097/MOH.0000000000000580 pmid: 32205586 |
[2] |
Zhan W, Tian W, Zhang W, et al. ANGPTL4 attenuates palmitic acid-induced endothelial cell injury by increasing autophagy[J]. Cell Signal, 2022, 98: 110410. DOI: 10.1016/j.cellsig.2022.110410.
doi: 10.1016/j.cellsig.2022.110410 |
[3] |
Aryal B, Price NL, Suarez Y, et al. ANGPTL4 in metabolic and cardiovascular disease[J]. Trends Mol Med, 2019, 25(8): 723-734. DOI: 10.1016/j.molmed.2019.05.010.
doi: S1471-4914(19)30127-3 pmid: 31235370 |
[4] |
Fang Y, Li X, Cheng H, et al. ANGPTL4 regulates lung adenocarcinoma pyroptosis and apoptosis via NLRP3\ASC\caspase 8 signaling pathway to promote resistance to gefitinib[J]. J Oncol, 2022, 2022: 3623570. DOI: 10.1155/2022/3623570.
doi: 10.1155/2022/3623570 |
[5] |
Lin S, Miao Y, Zhang X, et al. ANGPTL4 negatively regulates the progression of osteosarcoma by remodeling branched-chain amino acid metabolism[J]. Cell Death Discov, 2022, 8(1): 225. DOI: 10.1038/s41420-022-01029-x.
doi: 10.1038/s41420-022-01029-x pmid: 35461343 |
[6] |
Yan HH, Jung KH, Lee JE, et al. ANGPTL4 accelerates KRASG12D-induced acinar to ductal metaplasia and pancreatic carcinogenesis[J]. Cancer Lett, 2021, 519: 185-198. DOI: 10.1016/j.canlet.2021.07.036.
doi: 10.1016/j.canlet.2021.07.036 |
[7] |
Hui B, Ji H, Xu Y, et al. RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4[J]. Cell Death Dis, 2019, 10(3): 207. DOI: 10.1038/s41419-019-1384-9.
doi: 10.1038/s41419-019-1384-9 pmid: 30814490 |
[8] |
Kersten S. New insights into angiopoietin-like proteins in lipid metabolism and cardiovascular disease risk[J]. Curr Opin Lipidol, 2019, 30(3): 205-211. DOI: 10.1097/MOL.0000000000000600.
doi: 10.1097/MOL.0000000000000600 pmid: 30893111 |
[9] |
Hübers C, Abdul Pari AA, Grieshober D, et al. Primary tumor-derived systemic nANGPTL4 inhibits metastasis[J]. J Exp Med, 2023, 220(1): e20202595. DOI: 10.1084/jem.20202595.
doi: 10.1084/jem.20202595 |
[10] |
Aarsetøy R, Ueland T, Aukrust P, et al. Angiopoietin-2 and angiopoietin-like 4 protein provide prognostic information in patients with suspected acute coronary syndrome[J]. J Intern Med, 2021, 290(4): 894-909. DOI: 10.1111/joim.13339.
doi: 10.1111/joim.13339 pmid: 34237166 |
[11] |
Ehrlich KC, Lacey M, Ehrlich M. Tissue-specific epigenetics of atherosclerosis-related ANGPT and ANGPTL genes[J]. Epigenomics, 2019, 11(2): 169-186. DOI: 10.2217/epi-2018-0150.
doi: 10.2217/epi-2018-0150 pmid: 30688091 |
[12] |
Oteng AB, Ruppert PMM, Boutens L, et al. Characterization of ANGPTL4 function in macrophages and adipocytes using Angptl4-knockout and Angptl4-hypomorphic mice[J]. J Lipid Res, 2019, 60(10): 1741-1754. DOI: 10.1194/jlr.M094128.
doi: 10.1194/jlr.M094128 |
[13] |
Gutgsell AR, Ghodge SV, Bowers AA, et al. Mapping the sites of the lipoprotein lipase (LPL)-angiopoietin-like protein 4 (ANGPTL4) interaction provides mechanistic insight into LPL inhibition[J]. J Biol Chem, 2019, 294(8): 2678-2689. DOI: 10.1074/jbc.RA118.005932.
doi: 10.1074/jbc.RA118.005932 pmid: 30591589 |
[14] |
He Y, Yang W, Gan L, et al. Silencing HIF-1α aggravates non-alcoholic fatty liver disease in vitro through inhibiting PPAR-α/ANGPTL4 singling pathway[J]. Gastroenterol Hepatol, 2021, 44(5): 355-365. DOI: 10.1016/j.gastrohep.2020.09.014.
doi: 10.1016/j.gastrohep.2020.09.014 |
[15] |
Liu YZ, Zhang C, Jiang JF, et al. Angiopoietin-like proteins in atherosclerosis[J]. Clin Chim Acta, 2021, 521: 19-24. DOI: 10.1016/j.cca.2021.06.024.
doi: 10.1016/j.cca.2021.06.024 |
[16] |
Yang L, Wang Y, Sun R, et al. ANGPTL4 promotes the proliferation of papillary thyroid cancer via AKT pathway[J]. Onco Targets Ther, 2020, 13: 2299-2309. DOI: 10.2147/OTT.S237751.
doi: 10.2147/OTT.S237751 |
[17] |
Avalle L, Raggi L, Monteleone E, et al. STAT3 induces breast cancer growth via ANGPTL4, MMP13 and STC1 secretion by cancer associated fibroblasts[J]. Oncogene, 2022, 41(10): 1456-1467. DOI: 10.1038/s41388-021-02172-y.
doi: 10.1038/s41388-021-02172-y pmid: 35042959 |
[18] |
Li P, Zeng X, Liu Y, et al. Angiopoietin-like protein 4 is involved in manganese superoxide dismutase-mediated suppression of breast cancer cell growth[J]. Bull Exp Biol Med, 2022, 173(2): 240-245. DOI: 10.1007/s10517-022-05526-y.
doi: 10.1007/s10517-022-05526-y |
[19] |
El-Shal AS, Zidan HE, Rashad NM, et al. Angiopoietin-like protein 3 and 4 expression 4 and their serum levels in hepatocellular carcinoma[J]. Cytokine, 2017, 96: 75-86. DOI: 10.1016/j.cyto.2017.03.006.
doi: S1043-4666(17)30071-6 pmid: 28371666 |
[20] |
Valiakou V, Eliadis P, Karamichali E, et al. Differential expression of the host lipid regulators ANGPTL-3 and ANGPTL-4 in HCV infection and treatment[J]. Int J Mol Sci, 2021, 22(15): 7961. DOI: 10.3390/ijms22157961.
doi: 10.3390/ijms22157961 |
[21] |
D'souza S, Lau KC, Coffin CS, et al. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma[J]. World J Gastroenterol, 2020, 26(38): 5759-5783. DOI: 10.3748/wjg.v26.i38.5759.
doi: 10.3748/wjg.v26.i38.5759 |
[22] |
Frenette C. Advances in hepatocellular carcinoma[J]. Clin Liver Dis, 2020, 24(4): Ⅹ;Ⅲ-ⅩⅣ. DOI: 10.1016/j.cld.2020.08.014.
doi: 10.1016/j.cld.2020.08.014 |
[23] |
Cao Y, Agarwal R, Dituri F, et al. NGS-based transcriptome profiling reveals biomarkers for companion diagnostics of the TGF-β receptor blocker galunisertib in HCC[J]. Cell Death Dis, 2017, 8(2): e2634. DOI: 10.1038/cddis.2017.44.
doi: 10.1038/cddis.2017.44 |
[24] |
Fekir K, Dubois-Pot-Schneider H, Désert R, et al. Retrodifferentiation of human tumor hepatocytes to stem cells leads to metabolic reprogramming and chemoresistance[J]. Cancer Res, 2019, 79(8): 1869-1883. DOI: 10.1158/0008-5472.CAN-18-2110.
doi: 10.1158/0008-5472.CAN-18-2110 pmid: 30837223 |
[25] |
Wan J, Wen D, Dong L, et al. Establishment of monoclonal HCC cell lines with organ site-specific tropisms[J]. BMC Cancer, 2015, 15: 678. DOI: 10.1186/s12885-015-1692-0.
doi: 10.1186/s12885-015-1692-0 pmid: 26459277 |
[26] |
Wang FT, Li XP, Pan MS, et al. Identification of the prognostic value of elevated ANGPTL4 expression in gallbladder cancer-associated fibroblasts[J]. Cancer Med, 2021, 10(17): 6035-6047. DOI: 10.1002/cam4.4150.
doi: 10.1002/cam4.4150 |
[27] |
Lin J, Peng X, Dong K, et al. Genomic characterization of co-existing neoplasia and carcinoma lesions reveals distinct evolutionary paths of gallbladder cancer[J]. Nat Commun, 2021, 12(1): 4753. DOI: 10.1038/s41467-021-25012-9.
doi: 10.1038/s41467-021-25012-9 pmid: 34362903 |
[28] |
Shen CJ, Chang KY, Lin BW, et al. Oleic acid-induced NOX4 is dependent on ANGPTL4 expression to promote human colorectal cancer metastasis[J]. Theranostics, 2020, 10(16): 7083-7099. DOI: 10.7150/thno.44744.
doi: 10.7150/thno.44744 |
[29] |
Hsieh HY, Jou YC, Tung CL, et al. Epigenetic silencing of the dual-role signal mediator, ANGPTL4 in tumor tissues and its overexpression in the urothelial carcinoma microenvironment[J]. Oncogene, 2018, 37(5): 673-686. DOI: 10.1038/onc.2017.375.
doi: 10.1038/onc.2017.375 pmid: 29035390 |
[30] |
Tsai YT, Wu AC, Yang WB, et al. ANGPTL4 induces TMZ resistance of glioblastoma by promoting cancer stemness enrichment via the EGFR/AKT/4E-BP1 cascade[J]. Int J Mol Sci, 2019, 20(22): 5625. DOI: 10.3390/ijms20225625.
doi: 10.3390/ijms20225625 |
[31] |
Hu B, Lin JZ, Yang XB, et al. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: a review[J]. Cell Prolif, 2020, 53(3): e12772. DOI: 10.1111/cpr.12772.
doi: 10.1111/cpr.12772 |
[32] |
Zuo Y, Dai L, Li L, et al. ANGPTL4 regulates psoriasis via modulating hyperproliferation and inflammation of keratinocytes[J]. Front Pharmacol, 2022, 13: 850967. DOI: 10.3389/fphar.2022.850967.
doi: 10.3389/fphar.2022.850967 |
[33] |
Dash S, Aydin Y, Widmer KE, et al. Hepatocellular carcinoma mechanisms associated with chronic HCV infection and the impact of direct-acting antiviral treatment[J]. J Hepatocell Carcinoma, 2020, 7: 45-76. DOI: 10.2147/JHC.S221187.
doi: 10.2147/JHC.S221187 pmid: 32346535 |
[34] |
Jiang Q, Miao R, Wang Y, et al. ANGPTL4 inhibits granulosa cell proliferation in polycystic ovary syndrome by EGFR/JAK1/STAT3-mediated induction of p21[J]. FASEB J, 2023, 37(2): e22693. DOI: 10.1096/fj.202201246RR.
doi: 10.1096/fj.202201246RR |
[35] |
Zhang Y, Yang X, Liu S, et al. Comprehensive analysis of potential prognostic values of ANGPTLs in colorectal cancer[J]. Genes (Basel), 2022, 13(12): 2215. DOI: 10.3390/genes13122215.
doi: 10.3390/genes13122215 |
[36] |
Cai YC, Yang H, Wang KF, et al. ANGPTL4 overexpression inhibits tumor cell adhesion and migration and predicts favorable prognosis of triple-negative breast cancer[J]. BMC Cancer, 2020, 20(1): 878. DOI: 10.1186/s12885-020-07343-w.
doi: 10.1186/s12885-020-07343-w |
[37] |
Hirao-Suzuki M, Takayuki K, Takiguchi M, et al. Cannabidiolic acid activates the expression of the PPARβ/δ target genes in MDA-MB-231 cells[J]. Arch Biochem Biophys, 2022, 731: 109428. DOI: 10.1016/j.abb.2022.109428.
doi: 10.1016/j.abb.2022.109428 |
[38] |
Zhang H, Wei S, Ning S, et al. Evaluation of TGFβ, XPO4, elF5A2 and ANGPTL4 as biomarkers in HCC[J]. Exp Ther Med, 2013, 5(1): 119-127. DOI: 10.3892/etm.2012.750.
doi: 10.3892/etm.2012.750 pmid: 23251252 |
[39] |
Ng KT, Xu A, Cheng Q, et al. Clinical relevance and therapeutic potential of angiopoietin-like protein 4 in hepatocellular carcinoma[J]. Mol Cancer, 2014, 13: 196. DOI: 10.1186/1476-4598-13-196.
doi: 10.1186/1476-4598-13-196 |
[40] |
Vp V, Kannan A, Perumal MK. Role of adipocyte-derived extracellular vesicles during the progression of liver inflammation to hepatocellular carcinoma[J/OL]. J Cell Physiol. [2023-03-24]. https://pubmed.ncbi.nlm.nih.gov/36960683/. DOI: 10.1002/jcp.31008.
doi: 10.1002/jcp.31008 |
[41] |
Zhang K, Zhai Z, Yu S, et al. DNA methylation mediated down-regulation of ANGPTL4 promotes colorectal cancer metastasis by activating the ERK pathway[J]. J Cancer, 2021, 12(18): 5473-5485. DOI: 10.7150/jca.52338.
doi: 10.7150/jca.52338 pmid: 34405010 |
[42] |
Li J, Ma X, Chakravarti D, et al. Genetic and biological hallmarks of colorectal cancer[J]. Genes Dev, 2021, 35(11/12): 787-820. DOI: 10.1101/gad.348226.120.
doi: 10.1101/gad.348226.120 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||