Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (8): 478-483.doi: 10.3760/cma.j.cn371439-20220511-00092
• Reviews • Previous Articles Next Articles
Hu Ru, Li Donglin, Yan Xuebing()
Received:
2022-05-11
Revised:
2022-06-15
Online:
2022-08-08
Published:
2022-09-21
Contact:
Yan Xuebing
E-mail:yyxxbb8904@163.com
Supported by:
Hu Ru, Li Donglin, Yan Xuebing. Methyltransferase like protein 14 and tumor[J]. Journal of International Oncology, 2022, 49(8): 478-483.
[1] |
Liu X, Qin J, Gao T, et al. Analysis of METTL3 and METTL14 in hepatocellular carcinoma[J]. Aging (Albany NY), 2020, 12(21): 21638-21659. DOI: 10.18632/aging.103959.
doi: 10.18632/aging.103959 |
[2] |
Li Y, Ge YZ, Xu L, et al. The potential roles of RNA N6-methyladenosine in urological tumors[J]. Front Cell Dev Biol, 2020, 8: 579919. DOI: 10.3389/fcell.2020.579919.
doi: 10.3389/fcell.2020.579919 |
[3] |
Gao R, Ye M, Liu B, et al. m6A modification: a double-edged sword in tumor development[J]. Front Oncol, 2021, 11: 679367. DOI: 10.3389/fonc.2021.679367.
doi: 10.3389/fonc.2021.679367 |
[4] |
Chen C, Guo Y, Guo Y, et al. m6A modification in non-coding RNA: the role in cancer drug resistance[J]. Front Oncol, 2021, 11: 746789. DOI: 10.3389/fonc.2021.746789.
doi: 10.3389/fonc.2021.746789 |
[5] |
Xu P, Ge R. Roles and drug development of METTL3 (methyltrans-ferase-like 3) in anti-tumor therapy[J]. Eur J Med Chem, 2022, 230: 114118. DOI: 10.1016/j.ejmech.2022.114118.
doi: 10.1016/j.ejmech.2022.114118 |
[6] |
Qu J, Yan H, Hou Y, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential[J]. J Hematol Oncol, 2022, 15(1): 8. DOI: 10.1186/s13045-022-01224-4.
doi: 10.1186/s13045-022-01224-4 |
[7] |
Guan Q, Lin H, Miao L, et al. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer[J]. J Hematol Oncol, 2022, 15(1): 13. DOI: 10.1186/s13045-022-01231-5.
doi: 10.1186/s13045-022-01231-5 |
[8] |
Yi D, Wang R, Shi X, et al. METTL14 promotes the migration and invasion of breast cancer cells by modulating N6‑methyladenosine and hsa‑miR‑146a‑5p expression[J]. Oncol Rep, 2020, 43(5): 1375-1386. DOI: 10.3892/or.2020.7515.
doi: 10.3892/or.2020.7515 |
[9] |
Sun T, Wu Z, Wang X, et al. LNC942 promoting METTL14-mediated m6A methylation in breast cancer cell proliferation and progression[J]. Oncogene, 2020, 39(31): 5358-5372. DOI: 10.1038/s41388-020-1338-9.
doi: 10.1038/s41388-020-1338-9 |
[10] |
Peng F, Xu J, Cui B, et al. Oncogenic AURKA-enhanced N6-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells[J]. Cell Res, 2021, 31(3): 345-361. DOI: 10.1038/s41422-020-00397-2.
doi: 10.1038/s41422-020-00397-2 |
[11] |
Xiao H, Fan X, Zhang R, et al. Upregulated N6-methyladenosine RNA in peripheral blood: potential diagnostic biomarker for breast cancer[J]. Cancer Res Treat, 2021, 53(2): 399-408. DOI: 10.4143/crt.2020.870.
doi: 10.4143/crt.2020.870 pmid: 33138349 |
[12] |
Gong PJ, Shao YC, Yang Y, et al. Analysis of N6-methyladenosine methyltransferase reveals METTL14 and ZC3H13 as tumor suppressor genes in breast cancer[J]. Front Oncol, 2020, 10: 578963. DOI: 10.3389/fonc.2020.578963.
doi: 10.3389/fonc.2020.578963 |
[13] |
Zhao C, Ling X, Xia Y, et al. LncRNA UCA1 promotes SOX12 expression in breast cancer by regulating m6A modification of miR-375 by METTL14 through DNA methylation[J]. Cancer Gene Ther, 2022, 29(7):1043-1055. DOI: 10.1038/s41417-021-00390-w.
doi: 10.1038/s41417-021-00390-w |
[14] |
Dong XF, Wang Y, Huang BF, et al. Downregulated METTL14 expression correlates with breast cancer tumor grade and molecular classification[J]. Biomed Res Int, 2020, 2020: 8823270. DOI: 10.1155/2020/8823270.
doi: 10.1155/2020/8823270 |
[15] |
Wu L, Wu D, Ning J, et al. Changes of N6-methyladenosine modulators promote breast cancer progression[J]. BMC Cancer, 2019, 19(1): 326. DOI: 10.1186/s12885-019-5538-z.
doi: 10.1186/s12885-019-5538-z |
[16] |
Wang S, Zou X, Chen Y, et al. Effect of N6-methyladenosine regulators on progression and prognosis of triple-negative breast cancer[J]. Front Genet, 2021, 11: 580036. DOI: 10.3389/fgene.2020.580036.
doi: 10.3389/fgene.2020.580036 |
[17] |
Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing[J]. Hepatology, 2017, 65(2): 529-543. DOI: 10.1002/hep.28885.
doi: 10.1002/hep.28885 |
[18] |
Du L, Li Y, Kang M, et al. USP48 is upregulated by Mettl14 to attenuate hepatocellular carcinoma via regulating SIRT6 stabilization[J]. Cancer Res, 2021, 81(14): 3822-3834. DOI: 10.1158/0008-5472.CAN-20-4163.
doi: 10.1158/0008-5472.CAN-20-4163 |
[19] |
Shi Y, Zhuang Y, Zhang J, et al. METTL 14 inhibits hepatocellular carcinoma metastasis through regulating EGFR/PI3K/AKT signaling pathway in an m6A-dependent manner[J]. Cancer Manag Res, 2020, 12: 13173-13184. DOI: 10.2147/CMAR.S286275.
doi: 10.2147/CMAR.S286275 |
[20] |
Ghazi T, Nagiah S, Chuturgoon AA. Fusaric acid decreases p53 expression by altering promoter methylation and m6A RNA methylation in human hepatocellular carcinoma (HepG2) cells[J]. Epigenetics, 2021, 16(1): 79-91. DOI: 10.1080/15592294.2020.1788324.
doi: 10.1080/15592294.2020.1788324 |
[21] |
周腾飞, 任子夫, 陈超爽. METTL14在肝细胞癌中的表达及临床意义[J]. 南方医科大学学报, 2020, 40(4): 567-572. DOI: 10.12122/j.issn.1673-4254.2020.04.19.
doi: 10.12122/j.issn.1673-4254.2020.04.19 |
[22] |
Wu X, Zhang X, Tao L, et al. Prognostic value of an m6A RNA methylation regulator-based signature in patients with hepatocellular carcinoma[J]. Biomed Res Int, 2020, 2020: 2053902. DOI: 10.1155/2020/2053902.
doi: 10.1155/2020/2053902 |
[23] |
Fan Z, Yang G, Zhang W, et al. Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2-dependent silencing of SLC7A11[J]. J Cell Mol Med, 2021, 25(21): 10197-10212. DOI: 10.1111/jcmm.16957.
doi: 10.1111/jcmm.16957 |
[24] |
Liu X, Xiao M, Zhang L, et al. The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway[J]. J Clin Lab Anal, 2021, 35(3): e23655. DOI: 10.1002/jcla.23655.
doi: 10.1002/jcla.23655 |
[25] |
Yao Q, He L, Gao X, et al. The m6A methyltransferase METTL14-mediated N6-methyladenosine modification of PTEN mRNA inhi-bits tumor growth and metastasis in stomach adenocarcinoma[J]. Front Oncol, 2021, 11: 699749. DOI: 10.3389/fonc.2021.699749.
doi: 10.3389/fonc.2021.699749 |
[26] |
Fan HN, Chen ZY, Chen XY, et al. METTL14-mediated m6A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis[J]. Mol Cancer, 2022, 21(1): 51. DOI: 10.1186/s12943-022-01521-z.
doi: 10.1186/s12943-022-01521-z |
[27] |
Hu N, Ji H. N6-methyladenosine (m6A)-mediated up-regulation of long noncoding RNA LINC01320 promotes the proliferation, migration, and invasion of gastric cancer via miR495-5p/RAB19 axis[J]. Bioengineered, 2021, 12(1): 4081-4091. DOI: 10.1080/21655979.2021.1953210.
doi: 10.1080/21655979.2021.1953210 |
[28] |
Shimura T, Kandimalla R, Okugawa Y, et al. Novel evidence for m6A methylation regulators as prognostic biomarkers and FTO as a potential therapeutic target in gastric cancer[J]. Br J Cancer, 2022, 126(2): 228-237. DOI: 10.1038/s41416-021-01581-w.
doi: 10.1038/s41416-021-01581-w |
[29] |
Kong F, Liu X, Zhou Y, et al. Downregulation of METTL14 increases apoptosis and autophagy induced by cisplatin in pancreatic cancer cells[J]. Int J Biochem Cell Biol, 2020, 122: 105731. DOI: 10.1016/j.biocel.2020.105731.
doi: 10.1016/j.biocel.2020.105731 |
[30] |
Zhang C, Ou S, Zhou Y, et al. m6A methyltransferase METTL14-mediated upregulation of cytidine deaminase promoting gemcitabine resistance in pancreatic cancer[J]. Front Oncol, 2021, 11: 696371. DOI: 10.3389/fonc.2021.696371.
doi: 10.3389/fonc.2021.696371 |
[31] |
Tian J, Zhu Y, Rao M, et al. N6-methyladenosine mRNA methylation of PIK3CB regulates AKT signalling to promote PTEN-deficient pancreatic cancer progression[J]. Gut, 2020, 69(12): 2180-2192. DOI: 10.1136/gutjnl-2019-320179.
doi: 10.1136/gutjnl-2019-320179 |
[32] |
Wang M, Liu J, Zhao Y, et al. Upregulation of METTL14 me-diates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer[J]. Mol Cancer, 2020, 19(1): 130. DOI: 10.1186/s12943-020-01249-8.
doi: 10.1186/s12943-020-01249-8 pmid: 32843065 |
[33] |
Chen S, Yang C, Wang ZW, et al. CLK1/SRSF5 pathway induces aberrant exon skipping of METTL14 and Cyclin L2 and promotes growth and metastasis of pancreatic cancer[J]. J Hematol Oncol, 2021, 14(1): 60. DOI: 10.1186/s13045-021-01072-8.
doi: 10.1186/s13045-021-01072-8 |
[34] | Liu X, Liu L, Dong Z, et al. Expression patterns and prognostic value of m6A-related genes in colorectal cancer[J]. Am J Transl Res, 2019, 11(7): 3972-3991. |
[35] |
Chen X, Xu M, Xu X, et al. METTL14 suppresses CRC progression via regulating N6-methyladenosine-dependent primary miR-375 processing[J]. Mol Ther, 2020, 28(2): 599-612. DOI: 10.1016/j.ymthe.2019.11.016.
doi: 10.1016/j.ymthe.2019.11.016 |
[36] |
Yang X, Zhang S, He C, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST[J]. Mol Cancer, 2020, 19(1): 46. DOI: 10.1186/s12943-020-1146-4.
doi: 10.1186/s12943-020-1146-4 |
[37] |
Chen X, Xu M, Xu X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer[J]. Mol Cancer, 2020, 19(1): 106. DOI: 10.1186/s12943-020-01220-7.
doi: 10.1186/s12943-020-01220-7 |
[38] |
Wang S, Gan M, Chen C, et al. Methyl CpG binding protein 2 promotes colorectal cancer metastasis by regulating N6-methyladenosine methylation through methyltransferase-like 14[J]. Cancer Sci, 2021, 112(8): 3243-3254. DOI: 10.1111/cas.15011.
doi: 10.1111/cas.15011 |
[39] |
Wang H, Wei W, Zhang ZY, et al. TCF4 and HuR mediated-METTL14 suppresses dissemination of colorectal cancer via N6-methyladenosine-dependent silencing of ARRDC4[J]. Cell Death Dis, 2021, 13(1): 3. DOI: 10.1038/s41419-021-04459-0.
doi: 10.1038/s41419-021-04459-0 pmid: 34916487 |
[40] |
Dong L, Chen C, Zhang Y, et al. The loss of RNA N6-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8+ T cell dysfunction and tumor growth[J]. Cancer Cell, 2021, 39(7): 945-957.e10. DOI: 10.1016/j.ccell.2021.04.016.
doi: 10.1016/j.ccell.2021.04.016 |
[41] |
Wang L, Hui H, Agrawal K, et al. m6A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy[J]. EMBO J, 2020, 39(20): e104514. DOI: 10.15252/embj.2020104514.
doi: 10.15252/embj.2020104514 |
[42] |
Luo M, Huang Z, Yang X, et al. PHLDB2 mediates cetuximab resistance via interacting with EGFR in latent metastasis of colorectal cancer[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(4): 1223-1242. DOI: 10.1016/j.jcmgh.2021.12.011.
doi: 10.1016/j.jcmgh.2021.12.011 |
[43] |
Guimarães-Teixeira C, Lobo J, Miranda-Gonçalves V, et al. Downregulation of m6A writer complex member METTL14 in bladder urothelial carcinoma suppresses tumor aggressiveness[J]. Mol Oncol, 2022, 16(9): 1841-1856. DOI: 10.1002/1878-0261.13181.
doi: 10.1002/1878-0261.13181 |
[44] |
Gu C, Wang Z, Zhou N, et al. Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N6-methyladenosine of Notch1[J]. Mol Cancer, 2019, 18(1): 168. DOI: 10.1186/s12943-019-1084-1.
doi: 10.1186/s12943-019-1084-1 |
[45] |
Zhang N, Hua X, Tu H, et al. Isorhapontigenin (ISO) inhibits EMT through FOXO3A/METTL14/VIMENTIN pathway in bladder cancer cells[J]. Cancer Lett, 2021, 520: 400-408. DOI: 10.1016/j.canlet.2021.07.041.
doi: 10.1016/j.canlet.2021.07.041 pmid: 34332039 |
[46] |
Wei W, Sun J, Zhang H, et al. Circ0008399 interaction with WTAP promotes assembly and activity of the m6A methyltransfe-rase complex and promotes cisplatin resistance in bladder cancer[J]. Cancer Res, 2021, 81(24): 6142-6156. DOI: 10.1158/0008-5472.CAN-21-1518.
doi: 10.1158/0008-5472.CAN-21-1518 |
[47] |
Gong D, Zhang J, Chen Y, et al. The m6A-suppressed P2RX6 activation promotes renal cancer cells migration and invasion through ATP-induced Ca2+ nflux modulating ERK1/2 phosphorylation and MMP9 signaling pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 233. DOI: 10.1186/s13046-019-1223-y.
doi: 10.1186/s13046-019-1223-y |
[48] |
Wang Q, Zhang H, Chen Q, et al. Identification of METTL14 in kidney renal clear cell carcinoma using bioinformatics analysis[J]. Dis Markers, 2019, 2019: 5648783. DOI: 10.1155/2019/5648783.
doi: 10.1155/2019/5648783 |
[49] |
Wang J, Zhang C, He W, et al. Effect of m6A RNA methylation regulators on malignant progression and prognosis in renal clear cell carcinoma[J]. Front Oncol, 2020, 10: 3. DOI: 10.3389/fonc.2020.00003.
doi: 10.3389/fonc.2020.00003 |
[50] |
Wang Y, Cong R, Liu S, et al. Decreased expression of METTL14 predicts poor prognosis and construction of a prognostic signature for clear cell renal cell carcinoma[J]. Cancer Cell Int, 2021, 21(1): 46. DOI: 10.1186/s12935-020-01738-2.
doi: 10.1186/s12935-020-01738-2 pmid: 33430867 |
[51] |
Zhang C, Chen L, Liu Y, et al. Downregulated METTL14 accumulates BPTF that reinforces super-enhancers and distal lung metastasis via glycolytic reprogramming in renal cell carcinoma[J]. The-ranostics, 2021, 11(8): 3676-3693. DOI: 10.7150/thno.55424.
doi: 10.7150/thno.55424 |
[52] |
Liu T, Wang H, Fu Z, et al. Methyltransferase-like 14 suppresses growth and metastasis of renal cell carcinoma by decreasing long noncoding RNA NEAT1[J]. Cancer Sci, 2022, 113(2): 446-458. DOI: 10.1111/cas.15212.
doi: 10.1111/cas.15212 |
[53] |
Shen D, Ding L, Lu Z, et al. METTL14-mediated Lnc-LSG1 m6A modification inhibits clear cell renal cell carcinoma metastasis via regulating ESRP2 ubiquitination[J]. Mol Ther Nucleic Acids, 2022, 27: 547-561. DOI: 10.1016/j.omtn.2021.12.024.
doi: 10.1016/j.omtn.2021.12.024 |
[54] |
Xu T, Gao S, Ruan H, et al. METTL14 Acts as a potential regulator of tumor immune and progression in clear cell renal cell carcinoma[J]. Front Genet, 2021, 12: 609174. DOI: 10.3389/fgene.2021.609174.
doi: 10.3389/fgene.2021.609174 |
[55] |
Ji G, Huang C, He S, et al. Comprehensive analysis of m6A regulators prognostic value in prostate cancer[J]. Aging (Albany NY), 2020, 12(14): 14863-14884. DOI: 10.18632/aging.103549.
doi: 10.18632/aging.103549 |
[56] |
Liu Z, Zhong J, Zeng J, et al. Characterization of the m6A-associated tumor immune microenvironment in prostate cancer to aid immunotherapy[J]. Front Immunol, 2021, 12: 735170. DOI: 10.3389/fimmu.2021.735170.
doi: 10.3389/fimmu.2021.735170 |
[57] |
Wu Q, Xie X, Huang Y, et al. N6-methyladenosine RNA methylation regulators contribute to the progression of prostate cancer[J]. J Cancer, 2021, 12(3): 682-692. DOI: 10.7150/jca.46379.
doi: 10.7150/jca.46379 |
[58] |
Feng D, Shi X, Xiong Q, et al. A ferroptosis-related gene prognostic index associated with biochemical recurrence and radiation resistance for patients with prostate cancer undergoing radical radiotherapy[J]. Front Cell Dev Biol, 2022, 10: 803766. DOI: 10.3389/fcell.2022.803766.
doi: 10.3389/fcell.2022.803766 |
[59] |
Yuan Y, Du Y, Wang L, et al. The m6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation[J]. J Cancer, 2020, 11(12): 3588-3595. DOI: 10.7150/jca.42338.
doi: 10.7150/jca.42338 pmid: 32284755 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||