Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (11): 688-692.doi: 10.3760/cma.j.cn371439-20210906-00136
• Reviews • Previous Articles Next Articles
Liu Peipei, Yang Mengxue, Yan Xuebing()
Received:
2021-09-06
Revised:
2021-09-30
Online:
2021-11-08
Published:
2021-12-14
Contact:
Yan Xuebing
E-mail:yyxxbb8904@163.com
Supported by:
Liu Peipei, Yang Mengxue, Yan Xuebing. Research advances of m6A methylation modification in digestive system neoplasms[J]. Journal of International Oncology, 2021, 48(11): 688-692.
[1] |
Darwiche N. Epigenetic mechanisms and the hallmarks of cancer: an intimate affair[J]. Am J Cancer Res, 2020, 10(7):1954-1978.
pmid: 32774995 |
[2] |
Chen M, Wong CM. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis[J]. Mol Cancer, 2020, 19(1):44. DOI: 10.1186/s12943-020-01172-y.
doi: 10.1186/s12943-020-01172-y |
[3] |
Wang Q, Chen C, Ding Q, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020, 69(7):1193-1205. DOI: 10.1136/gutjnl-2019-319639.
doi: 10.1136/gutjnl-2019-319639 |
[4] |
Tian J, Zhu Y, Rao M, et al. N6-methyladenosine mRNA methy-lation of PIK3CB regulates AKT signalling to promote PTEN-deficient pancreatic cancer progression[J]. Gut, 2020, 69(12):2180-2192. DOI: 10.1136/gutjnl-2019-320179.
doi: 10.1136/gutjnl-2019-320179 |
[5] |
Song P, Feng L, Li J, et al. β-catenin represses miR455-3p to stimulate m6A modification of HSF1 mRNA and promote its translation in colorectal cancer[J]. Mol Cancer, 2020, 19(1):129. DOI: 10.1186/s12943-020-01244-z.
doi: 10.1186/s12943-020-01244-z |
[6] |
Wang T, Kong S, Tao M, et al. The potential role of RNA N6-methyladenosine in cancer progression[J]. Mol Cancer, 2020, 19(1):88. DOI: 10.1186/s12943-020-01204-7.
doi: 10.1186/s12943-020-01204-7 |
[7] |
Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481):117-120. DOI: 10.1038/nature12730.
doi: 10.1038/nature12730 |
[8] |
Zhu ZM, Huo FC, Pei DS. Function and evolution of RNA N6-methyladenosine modification[J]. Int J Biol Sci, 2020, 16(11):1929-1940. DOI: 10.7150/ijbs.45231.
doi: 10.7150/ijbs.45231 |
[9] | Ji P, Wang X, Xie N, et al. N6-methyladenosine in RNA and DNA: an epitranscriptomic and epigenetic player implicated in determination of stem cell fate[J]. Stem Cells Int, 2018, 2018:3256524. DOI: 10.1155/2018/3256524. |
[10] |
Lu J, Qian J, Yin S, et al. Mechanisms of RNA N6-methyladenosine in hepatocellular carcinoma: from the perspectives of etiology[J]. Front Oncol, 2020, 10:1105. DOI: 10.3389/fonc.2020.01105.
doi: 10.3389/fonc.2020.01105 |
[11] |
Imam H, Khan M, Gokhale NS, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle[J]. Proc Natl Acad Sci U S A, 2018, 115(35):8829-8834. DOI: 10.1073/pnas.1808319115.
doi: 10.1073/pnas.1808319115 |
[12] |
Fang Q, Chen H. The significance of m6A RNA methylation regulators in predicting the prognosis and clinical course of HBV-related hepatocellular carcinoma[J]. Mol Med, 2020, 26(1):60. DOI: 10.1186/s10020-020-00185-z.
doi: 10.1186/s10020-020-00185-z |
[13] | Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepato-logy, 2018, 67(6):2254-2270. DOI: 10.1002/hep.29683. |
[14] |
Zhang C, Huang S, Zhuang H, et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation[J]. Oncogene, 2020, 39(23):4507-4518. DOI: 10.1038/s41388-020-1303-7.
doi: 10.1038/s41388-020-1303-7 |
[15] |
Cheng X, Li M, Rao X, et al. KIAA1429 regulates the migration and invasion of hepatocellular carcinoma by altering m6A modification of ID2 mRNA[J]. Onco Targets Ther, 2019, 12:3421-3428. DOI: 10.2147/ott.s180954.
doi: 10.2147/OTT |
[16] |
Chen Y, Peng C, Chen J, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1[J]. Mol Cancer, 2019, 18(1):127. DOI: 10.1186/s12943-019-1053-8.
doi: 10.1186/s12943-019-1053-8 |
[17] | Zuo X, Chen Z, Gao W, et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma[J]. Hematol Oncol, 2020, 13(1):5. DOI: 10.1186/s13045-019-0839-x. |
[18] |
Zhao M, Jia M, Xiang Y, et al. METTL3 promotes the progression of hepatocellular carcinoma through m6A-mediated up-regulation of microRNA-873-5p[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 319(5):G636. DOI: 10.1152/ajpgi.00161.2020.
doi: 10.1152/ajpgi.00161.2020 |
[19] |
Lin Y, Wei X, Jian Z, et al. METTL3 expression is associated with glycolysis metabolism and sensitivity to glycolytic stress in hepatocellular carcinoma[J]. Cancer Med, 2020, 9(8):2859-2867. DOI: 10.1002/cam4.2918.
doi: 10.1002/cam4.v9.8 |
[20] |
Zhou Y, Yin Z, Hou B, et al. Expression profiles and prognostic significance of RNA N6-methyladenosine-related genes in patients with hepatocellular carcinoma: evidence from independent datasets[J]. Cancer Manag Res, 2019, 11:3921-3931. DOI: 10.2147/CMAR.S191565.
doi: 10.2147/CMAR.S191565 pmid: 31118805 |
[21] | Wu X, Zhang X, Tao L, et al. Prognostic value of an m6A RNA methylation regulator-based signature in patients with hepatocellular carcinoma[J]. Biomed Res Int, 2020, 2020: 2053902. DOI: 10.1155/2020/2053902. |
[22] |
Zhang J, Bai R, Li M, et al. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression[J]. Nat Commun, 2019, 10(1):1858. DOI: 10.1038/s41467-019-09712-x.
doi: 10.1038/s41467-019-09712-x |
[23] |
Wang M, Liu J, Zhao Y, et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer[J]. Mol Cancer, 2020, 19(1):130. DOI: 10.1186/s12943-020-01249-8.
doi: 10.1186/s12943-020-01249-8 pmid: 32843065 |
[24] |
Guo X, Li K, Jiang W, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner[J]. Mol Cancer, 2020, 19(1):91. DOI: 10.1186/s12943-020-01158-w.
doi: 10.1186/s12943-020-01158-w |
[25] |
Hou J, Wang Z, Li H, et al. Gene signature and identification of clinical trait-related m6A regulators in pancreatic cancer[J]. Front Genet, 2020, 11:522. DOI: 10.3389/fgene.2020.00522.
doi: 10.3389/fgene.2020.00522 |
[26] |
Geng Y, Guan R, Hong W, et al. Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival[J]. Ann Transl Med, 2020, 8(6):387. DOI: 10.21037/atm.2020.03.98.
doi: 10.21037/atm.2020.03.98 pmid: 32355831 |
[27] | Taketo K, Konno M, Asai A, et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells[J]. Int J Oncol, 2018, 52(2):621-629. DOI: 10.3892/ijo.2017.4219. |
[28] | Wang Q, Geng W, Guo H, et al. Emerging role of RNA methyltransferase METTL3 in gastrointestinal cancer[J]. Hematol Oncol, 2020, 13(1):57. DOI: 10.1186/s13045-020-00895-1. |
[29] |
Yang DD, Chen ZH, Yu K, et al. METTL3 promotes the progression of gastric cancer via targeting the MYC pathway[J]. Front Oncol, 2020, 10:115. DOI: 10.3389/fonc.2020.00115.
doi: 10.3389/fonc.2020.00115 |
[30] |
Yan J, Huang X, Zhang X, et al. LncRNA LINC00470 promotes the degradation of PTEN mRNA to facilitate malignant behavior in gastric cancer cells[J]. Biochem Biophys Res Commun, 2020, 521(4):887-893. DOI: 10.1016/j.bbrc.2019.11.016.
doi: 10.1016/j.bbrc.2019.11.016 |
[31] |
Yue B, Song C, Yang L, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer[J]. Mol Cancer, 2019, 18(1):142. DOI: 10.1186/s12943-019-1065-4.
doi: 10.1186/s12943-019-1065-4 |
[32] |
Xie JW, Huang XB, Chen QY, et al. m6A modification-mediated BATF2 acts as a tumor suppressor in gastric cancer through inhibition of ERK signaling[J]. Mol Cancer, 2020, 19(1):114. DOI: 10.1186/s12943-020-01223-4.
doi: 10.1186/s12943-020-01223-4 |
[33] | Pi J, Wang W, Ji M, et al. YTHDF1 promotes gastric carcinogenesis by controlling translation of FZD7[J]. Cancer Res, 2020, 11: canres.0066.2020. DOI: 10.1158/0008-5472.can-20-0066. DOI: 10.1158/0008-5472.can-20-0066. |
[34] |
Li Y, Zheng D, Wang F, et al. Expression of demethylase genes, FTO and ALKBH1, is associated with prognosis of gastric cancer[J]. Dig Dis Sci, 2019, 64(6):1503-1513. DOI: 10.1007/s10620-018-5452-2.
doi: 10.1007/s10620-018-5452-2 |
[35] |
Shen C, Xuan B, Yan T, et al. m6A-dependent glycolysis enhances colorectal cancer progression[J]. Mol Cancer, 2020, 19(1):72. DOI: 10.1186/s12943-020-01190-w.
doi: 10.1186/s12943-020-01190-w |
[36] |
Xiang S, Liang X, Yin S, et al. N6-methyladenosine methyltransferase METTL3 promotes colorectal cancer cell proliferation through enhancing MYC expression[J]. Am J Transl Res, 2020, 12(5):1789-1806.
pmid: 32509177 |
[37] | Peng W, Li J, Chen R, et al. Upregulated METTL3 promotes metastasis of colorectal cancer via miR-1246/SPRED2/MAPK signaling pathway[J]. Exp Clin Cancer Res, 2019, 38(1):393. DOI: 10.1186/s13046-019-1408-4. |
[38] |
Uddin MB, Roy KR, Hosain SB, et al. An N6-methyladenosine at the transited codon 273 of p53 pre-mRNA promotes the expression of R273H mutant protein and drug resistance of cancer cells[J]. Biochem Pharmacol, 2019, 160:134-145. DOI: 10.1016/j.bcp.2018.12.014.
doi: 10.1016/j.bcp.2018.12.014 |
[39] |
Li T, Hu P S, Zuo Z, et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma[J]. Mol Cancer, 2019, 18(1):112. DOI: 10.1186/s12943-019-1038-7.
doi: 10.1186/s12943-019-1038-7 |
[40] |
Yang X, Zhang S, He C, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST[J]. Mol Cancer, 2020, 19(1):46. DOI: 10.1186/s12943-020-1146-4.
doi: 10.1186/s12943-020-1146-4 |
[41] |
Ji L, Chen S, Gu L, et al. Exploration of potential roles of m6A regulators in colorectal cancer prognosis[J]. Front Oncol, 2020, 10:768. DOI: 10.3389/fonc.2020.00768.
doi: 10.3389/fonc.2020.00768 |
[42] | Meng Y, Li S, Gu D, et al. Genetic variants in m6A modification genes are associated with colorectal cancer risk[J]. Carcinogenesis, 2020, 41(1):8-17. DOI: 10.1093/carcin/bgz165. |
[1] | Xie Shuping, Sun Yahong, Wang Chao. Prediction of efficacy of early-stage tumor markers combined with NLR and PLR for immunotherapy in gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 157-165. |
[2] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[3] | Li Lixi, Zhang Di, Luo Yang, Ma Fei. Clinical application of PARP inhibitors in breast cancer [J]. Journal of International Oncology, 2023, 50(2): 91-96. |
[4] | Jiang Shan, Xu Yangtao, Liu Xin, Chen Wenliang, Xu Ximing. Predictive value of baseline peripheral blood inflammatory biomarkers for prognosis in patients with advanced hepatocellular carcinoma treated with immunotherapy combined with targeted therapy [J]. Journal of International Oncology, 2023, 50(10): 600-607. |
[5] | He Zhefeng, Wu Yiyang, Li Zhenjun, Ying Xiaojiang. Predictive value of inflammatory markers in colorectal cancer [J]. Journal of International Oncology, 2022, 49(9): 560-563. |
[6] | Hu Ru, Li Donglin, Yan Xuebing. Methyltransferase like protein 14 and tumor [J]. Journal of International Oncology, 2022, 49(8): 478-483. |
[7] | Liu Xiaoting, Liu Yang, Zhang Huanqin, Xing Jinliang, Quan Zhibo. Application of tumor biomarkers in the diagnosis and prognosis of hepatocellular carcinoma [J]. Journal of International Oncology, 2022, 49(6): 371-375. |
[8] | Lei Yan, Zhang Gehong. Predictive value of biomarkers in immunotherapy of advanced non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(12): 739-744. |
[9] | Xu Kai, Wen Gang, Li Rui, Tian Yuan. Research progress on the prognostic value of the ratio of lymphocytes to C-reactive protein in digestive system neoplasms [J]. Journal of International Oncology, 2022, 49(10): 627-629. |
[10] | Hu Guangyue, Yin Hong, Zhang Hui, Luo Hong. Efficacy predictors of immune checkpoint inhibitors in the treatment of metastatic gastric cancer [J]. Journal of International Oncology, 2021, 48(8): 498-501. |
[11] | Zhuang Weitao, Qiao Guibin. Research and application of liquid biopsy based on epigenetic markers in the diagnosis and treatment of solid tumors [J]. Journal of International Oncology, 2021, 48(6): 358-361. |
[12] | Ju Xinyue, Hu Chunmei, Zhao Yue, Tang Yan. CDX2 and gastrointestinal neoplasms [J]. Journal of International Oncology, 2021, 48(6): 374-376. |
[13] | Wang Hui, Xia Rong, Wei Qingwen, Wan Yixin. Risk factors and predictive biomarkers of immune checkpoint inhibitor-associated pneumonia in non-small cell lung cancer [J]. Journal of International Oncology, 2021, 48(5): 296-301. |
[14] | Li Suyao, Huang Junxing. Research progress of biomarkers for predicting the efficacy of immunotherapy for tumor [J]. Journal of International Oncology, 2021, 48(4): 220-224. |
[15] | Wu Hansheng, Huang Shujie, Zhuang Weitao, Ding Yu, Gao Zhen, Qiao Guibin. m6A methylation modification and lung cancer [J]. Journal of International Oncology, 2021, 48(4): 225-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||