
Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (6): 355-359.doi: 10.3760/cma.j.cn371439-20191227-00035
• Review • Previous Articles Next Articles
Received:2019-12-27
															
							
																	Revised:2020-01-06
															
							
															
							
																	Online:2020-06-08
															
							
																	Published:2020-07-22
															
						Contact:
								Xu Xiulian   
																	E-mail:xxlqjl@sina.com
																					Supported by:Miao Qiuju, Xu Xiulian. Role of transmembrane proteins in malignant tumors[J]. Journal of International Oncology, 2020, 47(6): 355-359.
| [1] |  
											 Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer[J]. Mol Cancer, 2018,17(1):58. DOI: 10.1186/s12943-018-0782-4. 
																							 doi: 10.1186/s12943-018-0782-4 pmid: 29455648  | 
										
| [2] | Rodriguez-Bravo V, Pippa R, Song WM, et al. Nuclear pores promote lethal prostate cancer by increasing POM121-driven E2F1, MYC, and AR nuclear import[J]. Cell, 2018,174(5):174-1215.e1220.DOI: 10.1016/j.cell.2018.07.015. | 
| [3] |  
											 Qiao W, Han Y, Jin W, et al. Overexpression and biological function of TMEM48 in non-small cell lung carcinoma[J]. Tumour Biol, 2016,37(2):2575-2586. DOI: 10.1007/s13277-015-4014-x. 
																							 doi: 10.1007/s13277-015-4014-x pmid: 26392108  | 
										
| [4] |  
											 Zhu M, Jiang B, Yan D, et al. Knockdown of TMEM45A overcomes multidrug resistance and epithelial-mesenchymal transition in human colorectal cancer cells through inhibition of TGF-beta signaling pathway[J]. Clin Exp Pharmacol Physiol, 2019,47(3):503-516. DOI: 10.1111/1440-1681.13220. 
																							 doi: 10.1111/1440-1681.13220 pmid: 31788833  | 
										
| [5] |  
											 Guo J, Chen L, Luo N, et al. Inhibition of TMEM45A suppresses proliferation, induces cell cycle arrest and reduces cell invasion in human ovarian cancer cells[J]. Oncol Rep, 2015,33(6):3124-3130. DOI: 10.3892/or.2015.3902. 
																							 doi: 10.3892/or.2015.3902 pmid: 25872785  | 
										
| [6] |  
											 Sun W, Qiu G, Zou Y, et al. Knockdown of TMEM45A inhibits the proliferation, migration and invasion of glioma cells[J]. Int J Clin Exp Pathol, 2015,8(10):12657-12667. 
																							 pmid: 26722455  | 
										
| [7] |  
											 Luo F, Yang K, Wang YZ, et al. TMEM45B is a novel predictive biomarker for prostate cancer progression and metastasis[J]. Neoplasma, 2018,65(5):815-821. DOI: 10.4149/neo_2018_170822N551. 
																							 doi: 10.4149/neo_2018_170822N551 pmid: 30249106  | 
										
| [8] |  
											 Zhao LC, Shen BY, Deng XX, et al. TMEM45B promotes proliferation, invasion and migration and inhibits apoptosis in pancreatic can-cer cells[J]. Mol Biosyst, 2016,12(6):1860-1870. DOI: 10.1039/c6mb00203j. 
																							 doi: 10.1039/c6mb00203j pmid: 27108650  | 
										
| [9] |  
											 Hu R, Hu F, Xie X, et al. TMEM45B, up-regulated in human lung cancer, enhances tumorigenicity of lung cancer cells[J]. Tumour Biol, 2016,37(9):12181-12191. DOI: 10.1007/s13277-016-5063-5. 
																							 doi: 10.1007/s13277-016-5063-5 pmid: 27225290  | 
										
| [10] |  
											 Molina-Pinelo S, Gutiérrez G, Pastor MD, et al. MicroRNA-dependent regulation of transcription in non-small cell lung cancer[J]. PLoS One, 2014,9(3):e90524. DOI: 10.1371/journal.pone.0090524. 
																							 doi: 10.1371/journal.pone.0090524 pmid: 24625834  | 
										
| [11] |  
											 Li Y, Guo W, Liu S, et al. Silencing transmembrane protein 45B (TNEM45B) inhibits proliferation, invasion, and tumorigenesis in osteosarcoma cells[J]. Oncol Res, 2017,25(6):1021-1026. DOI: 10.3727/096504016x14821477992177. 
																							 doi: 10.3727/096504016X14821477992177 pmid: 28244852  | 
										
| [12] | Shen K, Yu W, Yu Y, et al. Knockdown of TMEM45B inhibits cell proliferation and invasion in gastric cancer[J]. Biomed Pharmaco-ther, 2018,104:576-581. DOI: 10.1016/j.biopha.2018.05.016. | 
| [13] |  
											 Zhang Q, Chen X, Zhang X, et al. Knockdown of TMEM14A expression by RNAi inhibits the proliferation and invasion of human ovarian cancer cells[J]. Biosci Rep, 2016,36(1):e00298. DOI: 10.1042/bsr20150258. 
																							 doi: 10.1042/BSR20150258 pmid: 26896463  | 
										
| [14] |  
											 Salim H, Zong D, Hååg P, et al. DKK1 is a potential novel mediator of cisplatin-refractoriness in non-small cell lung cancer cell lines[J]. BMC Cancer, 2015,15:628. DOI: 10.1186/s12885-015-1635-9. 
																							 doi: 10.1186/s12885-015-1635-9 pmid: 26353782  | 
										
| [15] |  
											 Cheng Z, Guo J, Chen L, et al. Overexpression of TMEM158 contributes to ovarian carcinogenesis[J]. J Exp Clin Cancer Res, 2015,34:75. DOI: 10.1186/s13046-015-0193-y. 
																							 doi: 10.1186/s13046-015-0193-y pmid: 26239324  | 
										
| [16] |  
											 Liu L, Zhang J, Li S, et al. Silencing of TMEM158 inhibits tumorigenesis and multidrug resistance in colorectal can-cer[J]. Nutr Cancer, 2019: 1-10. DOI: 10.1080/01635581.2019.1650192. 
																							 doi: 10.1080/01635581.2020.1783330 pmid: 32586130  | 
										
| [17] |  
											 Fu Y, Yao N, Ding D, et al. TMEM158 promotes pancreatic cancer aggressiveness by activation of TGFbeta1 and PI3K/AKT signaling pathway[J]. J Cell Physiol, 2020,235(3):2761-2775. DOI: 10.1002/jcp.29181. 
																							 doi: 10.1002/jcp.29181 pmid: 31531884  | 
										
| [18] |  
											 Yang J, Chen J, Del Carmen Vitery M, et al. PAC, an evolutiona-rily conserved membrane protein, is a proton-activated chloride channel[J]. Science, 2019,364(6438):395-399. DOI: 10.1126/science.aav9739. 
																							 doi: 10.1126/science.aav9739 pmid: 31023925  | 
										
| [19] |  
											 Zhao J, Zhu D, Zhang X, et al. TMEM206 promotes the malignancy of colorectal cancer cells by interacting with AKT and extracellular signal-regulated kinase signaling pathways[J]. J Cell Physiol, 2019,234(7):10888-10898. DOI: 10.1002/jcp.27751. 
																							 doi: 10.1002/jcp.27751 pmid: 30417481  | 
										
| [20] |  
											 Kaliaperumal J, Padarthi P, Elangovan N, et al. Anti-tumorigenic effect of nano formulated peptide pACC1 by diminishing de novo lipogenisis in DMBA induced mammary carcinoma rat model[J]. Biomed Pharmacother, 2014,68(6):763-773. DOI: 10.1016/j.biopha.2014.07.016. 
																							 doi: 10.1016/j.biopha.2014.07.016  | 
										
| [21] |  
											 Doolan P, Clynes M, Kennedy S, et al. TMEM25, REPS2 and Meis 1: favourable prognostic and predictive biomarkers for breast cancer[J]. Tumour Biol, 2009,30(4):200-209. DOI: 10.1159/000239795. 
																							 doi: 10.1159/000239795 pmid: 19776672  | 
										
| [22] |  
											 Hrašovec S, Hauptman N, Glǎvac D, et al. TMEM25 is a candidate biomarker methylated and down-regulated in colorectal cancer [J]. Dis Markers, 2013,34(2):93-104. DOI: 10.3233/dma-120948. 
																							 doi: 10.3233/DMA-120948  | 
										
| [23] |  
											 Zhou X, Popescu NC, Klein G, et al. The interferon-alpha responsive gene TMEM7 suppresses cell proliferation and is downregulated in human hepatocellular carcinoma[J]. Cancer Genet Cytogenet, 2007,177(1):6-15. DOI: 10.1016/j.cancergencyto.2007.04.007. 
																							 doi: 10.1016/j.cancergencyto.2007.04.007 pmid: 17693185  | 
										
| [24] |  
											 Wrzesiński T, Szelag M, Cieślikowski WA, et al. Expression of pre-selected TMEMs with predicted ER localization as potential classi-fiers of ccRCC tumors [J]. BMC Cancer, 2015,15:518. DOI: 10.1186/s12885-015-1530-4. 
																							 doi: 10.1186/s12885-015-1530-4 pmid: 26169495  | 
										
| [25] |  
											 Dang S, Feng S, Tien J, et al. Cryo-EM structures of the TMEM16A calcium-activated chloride channel[J]. Nature, 2017,552(7685):426-429. DOI: 10.1038/nature25024. 
																							 doi: 10.1038/nature25024 pmid: 29236684  | 
										
| [26] |  
											 Ji Q, Guo S, Wang X, et al. Recent advances in TMEM16A: structure, function, and disease[J]. J Cell Physiol, 2019,234(6):7856-7873. DOI: 10.1002/jcp.27865. 
																							 doi: 10.1002/jcp.27865 pmid: 30515811  | 
										
| [27] |  
											 Finegersh A, Kulich S, Guo T, et al. DNA methylation regulates TMEM16A/ANO1 expression through multiple CpG islands in head and neck squamous cell carcinoma[J]. Sci Rep, 2017,7(1):15173. DOI: 10.1038/s41598-017-15634-9. 
																							 doi: 10.1038/s41598-017-15634-9 pmid: 29123240  | 
										
| [28] |  
											 Wang H, Zou L, Ma K, et al. Cell-specific mechanisms of TMEM16A Ca(2+)-activated chloride channel in cancer[J]. Mol Cancer, 2017,16(1):152. DOI: 10.1186/s12943-017-0720-x. 
																							 doi: 10.1186/s12943-017-0720-x pmid: 28893247  | 
										
| [29] |  
											 Crottès D, Jan LY. The multifaceted role of TMEM16A in cancer[J]. Cell Calcium, 2019,82:102050. DOI: 10.1016/j.ceca.2019.06.004. 
																							 doi: 10.1016/j.ceca.2019.06.004 pmid: 31279157  | 
										
| [30] |  
											 Wu H, Wang H, Guan S, et al. Cell-specific regulation of proliferation by Ano1/TMEM16A in breast cancer with different ER, PR, and HER2 status[J]. Oncotarget, 2017,8(49):84996-85013. DOI: 10.18632/oncotarget.18662. 
																							 doi: 10.18632/oncotarget.18662 pmid: 29156699  | 
										
| [31] |  
											 Zhang X, Zhang Y, Miao Y, et al. TMEM17 depresses invasion and metastasis in lung cancer cells via ERK signaling pathway[J]. Oncotarget, 2017,8(41):70685-70694. DOI: 10.18632/oncotarget.19977. 
																							 doi: 10.18632/oncotarget.19977 pmid: 29050311  | 
										
| [32] |  
											 Zhao Y, Song K, Zhang Y, et al. TMEM17 promotes malignant progression of breast cancer via AKT/GSK3β signaling[J]. Cancer Manag Res, 2018,10:2419-2428. DOI: 10.2147/cmar.S168723. 
																							 doi: 10.2147/CMAR.S168723 pmid: 30122991  | 
										
| [33] |  
											 Shan Y, Ding H, Lu J, et al. Pleural MAC30 as a prognostic mar-ker in NSCLC with malignant pleural effusion[J]. Oncotarget, 2017,8(68):112809-112815. DOI: 10.18632/oncotarget.22631. 
																							 doi: 10.18632/oncotarget.22631 pmid: 29348867  | 
										
| [34] |  
											 Qu T, Zhao Y, Chen Y, et al. Down-regulated MAC30 expression inhibits breast cancer cell invasion an31934012d EMT by suppre-ssing Wnt/beta-catenin and PI3K/Akt signaling pathways[J]. Int J Clin Exp Pathol, 2019,12(5):1888-1896. 
																							 pmid: 31934012  | 
										
| [35] |  
											 Kabe Y, Nakane T, Koike I, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance[J]. Nat Commun, 2016,7:11030. DOI: 10.1038/ncomms11030. 
																							 doi: 10.1038/ncomms11030 pmid: 26988023  | 
										
| [36] |  
											 Song GQ, Zhao Y. MAC30 knockdown involved in the activation of the Hippo signaling pathway in breast cancer cells[J]. Biol Chem, 2018,399(11):1305-1311. DOI: 10.1515/hsz-2018-0250. 
																							 doi: 10.1515/hsz-2018-0250 pmid: 29990302  | 
										
| [37] |  
											 Longhitano L, Castracani CC, Tibullo D, et al. Sigma-1 and Sigma-2 receptor ligands induce apoptosis and autophagy but have opposite effect on cell proliferation in uveal melanoma[J]. Oncotarget, 2017,8(53):91099-91111. DOI: 10.18632/oncotarget.19556. 
																							 doi: 10.18632/oncotarget.19556 pmid: 29207628  | 
										
| [38] |  
											 Liu CC, Yu CF, Wang SC, et al. Sigma-2 receptor/TMEM97 agonist PB221 as an alternative drug for brain tumor[J]. BMC Cancer, 2019,19(1):473. DOI: 10.1186/s12885-019-5700-7. 
																							 doi: 10.1186/s12885-019-5700-7 pmid: 31109310  | 
										
| [39] |  
											 Huang YS, Lu HL, Zhang LJ, et al. Sigma-2 receptor ligands and their perspectives in cancer diagnosis and therapy[J]. Med Res Rev, 2014,34(3):532-566. DOI: 10.1002/med.21297. 
																							 doi: 10.1002/med.21297 pmid: 23922215  | 
										
| [40] |  
											 Ge YX, Wang CH, Hu FY, et al. New advances of TMEM88 in cancer initiation and progression, with special emphasis on Wnt signaling pathway[J]. J Cell Physiol, 2018,233(1):79-87. DOI: 10.1002/jcp.25853. 
																							 doi: 10.1002/jcp.25853 pmid: 28181235  | 
										
| [41] |  
											 Yu X, Zhang X, Zhang Y, et al. Cytosolic TMEM88 promotes triple-negative breast cancer by interacting with Dvl[J]. Oncotarget, 2015,6(28):25034-25045. DOI: 10.18632/oncotarget.4379. 
																							 doi: 10.18632/oncotarget.4379 pmid: 26325443  | 
										
| [42] |  
											 de Leon M, Cardenas H, Vieth E, et al. Transmembrane protein 88 (TMEM88) promoter hypomethylation is associated with platinum resistance in ovarian cancer[J]. Gynecol Oncol, 2016,142(3):539-547. DOI: 10.1016/j.ygyno.2016.06.017. 
																							 doi: 10.1016/j.ygyno.2016.06.017 pmid: 27374141  | 
										
| [43] |  
											 Zhang X, Wan JX, Ke ZP, et al. TMEM88, CCL14 and CLEC3B as prognostic biomarkers for prognosis and palindromia of human hepatocellular carcinoma[J]. Tumour Biol, 2017,39(7):1010428317708900. DOI: 10.1177/1010428317708900. 
																							 doi: 10.1177/1010428317708900 pmid: 28718365  | 
										
| [44] |  
											 Liu Z, An H, Song P, et al. Potential targets of TMEM176A in the growth of glioblastoma cells[J]. Onco Targets Ther, 2018,11:7763-7775. DOI: 10.2147/ott.S179725. 
																							 doi: 10.2147/OTT.S179725 pmid: 30464524  | 
										
| [45] |  
											 Li H, Zhang M, Linghu E, et al. Epigenetic silencing of TMEM176A activates ERK signaling in human hepatocellular carcinoma[J]. Clin Epigenetics, 2018,10(1):137. DOI: 10.1186/s13148-018-0570-4. 
																							 doi: 10.1186/s13148-018-0570-4 pmid: 30400968  | 
										
| [46] |  
											 Cuajungco MP, Podevin W, Valluri VK, et al. Abnormal accumulation of human transmembrane (TMEM)-176A and 176B proteins is associated with cancer pathology[J]. Acta Histochem, 2012,114(7):705-712. DOI: 10.1016/j.acthis.2011.12.006. 
																							 doi: 10.1016/j.acthis.2011.12.006  | 
										
| [47] |  
											 Segovia M, Russo S, Jeldres M, et al. Targeting TMEM176B enhances antitumor immunity and augments the efficacy of immune checkpoint blockers by unleashing inflammasome activation[J]. Cancer Cell, 2019, 35(5):767-781.DOI: 10.1016/j.ccell.2019.04.003. 
																							 doi: 10.1016/j.ccell.2019.04.003 pmid: 31085177  | 
										
| [1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. | 
| [2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. | 
| [3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. | 
| [4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. | 
| [5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. | 
| [6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. | 
| [7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. | 
| [8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. | 
| [9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. | 
| [10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. | 
| [11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. | 
| [12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. | 
| [13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. | 
| [14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. | 
| [15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
