Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (5): 289-292.doi: 10.3760/cma.j.cn371439-20200113-00020
• Reviews • Previous Articles Next Articles
Received:
2020-01-13
Revised:
2020-01-25
Online:
2020-05-08
Published:
2020-07-02
Contact:
Lyu Weiguo
E-mail:lbwg@zju.edu.cn
Supported by:
Wang Mengni, Lyu Weiguo. Research progress of Bub1 in cancers[J]. Journal of International Oncology, 2020, 47(5): 289-292.
[1] |
Overlack K, Primorac I, Vleugel M, et al. A molecular basis for the differential roles of Bub1 and BubR1 in the spindle assembly checkpoint[J]. Elife, 2015,4:e05269. DOI: 10.7554/eLife.05269.
doi: 10.7554/eLife.05269 pmid: 25611342 |
[2] |
Edwards F, Maton G, Gareil N, et al. Bub-1 promotes amphitelic chromosome biorientation via multiple activities at the kinetochore[J]. Elife, 2018,7:e40690. DOI: 10.7554/ eLife.40690.
doi: 10.7554/eLife.40690 pmid: 30547880 |
[3] |
Moyle MW, Kim T, Hattersley N, et al. A Bub1-Mad1 interaction targets the Mad1-Mad2 complex to unattached kinetochores to initiate the spindle checkpoint[J]. J Cell Biol, 2014,204(5):647-657. DOI: 10.1083/jcb.201311015.
doi: 10.1083/jcb.201311015 pmid: 24567362 |
[4] |
Zhang G, Kruse T, Lopez-Mendez B, et al. Bub1 positions Mad1 close to KNL1 MELT repeats to promote checkpoint signalling[J]. Nat Commun, 2017,8:15822. DOI: 10.1038/ncomms15822.
doi: 10.1038/ncomms15822 pmid: 28604727 |
[5] | Leontiou I, London N, May KM, et al. The Bub1-TPR domain interacts directly with Mad3 to generate robust spindle checkpoint arrest[J]. Curr Biol, 2019, 29(14): 2407- 2414. e7. DOI: 10.1016/j.cub.2019.06.011 |
[6] | Akera T, Trimm E, Lampson MA. Molecular strategies of meiotic cheating by selfish centromeres[J]. Cell, 2019, 178(5): 1132- 1144. e10. DOI: 10.1016/j.cell.2019.07.001. |
[7] |
Limzerwala JF, van Deursen JM. Crystallizing BubR1's kinase activity[J]. Cell Res, 2019,29(8):605-606. DOI: 10.1038/s41422-019-0199-7.
doi: 10.1038/s41422-019-0199-7 pmid: 31253942 |
[8] |
Hindriksen S, Lens SMA, Hadders MA. The ins and outs of Aurora B inner centromere localization[J]. Front Cell Dev Biol, 2017,5:112. DOI: 10.3389/fcell.2017.00112.
doi: 10.3389/fcell.2017.00112 pmid: 29312936 |
[9] |
Zhang M, Liang C, Chen Q, et al. Histone H2A phosphorylation recruits topoisomerase Ⅱ alpha to centromeres to safeguard genomic stability[J]. EMBO J, 2020,39(3):e101863. DOI: 10.15252/embj.2019101863.
doi: 10.15252/embj.2019101863 pmid: 31769059 |
[10] |
Li F, Kim H, Ji Z, et al. The Bub3-Bub1 complex promotes telomere DNA replication[J]. Mol Cell, 2018,70(3): 395-407.e4. DOI: 10.1016/j.molcel.2018.03.032.
doi: 10.1016/j.molcel.2018.03.032 pmid: 29727616 |
[11] |
Nyati S, Schinske-Sebolt K, Pitchiaya S, et al. The kinase activity of the Ser/Thr kinase Bub1 promotes TGF-β signaling[J]. Sci Signal, 2015,8(358): ra1. DOI: 10.1126 /scisignal.2005379 .
doi: 10.1126/scisignal.aaa4696 pmid: 25564676 |
[12] |
Lang F, Sun Z, Pei Y, et al. Shugoshin 1 is dislocated by KSHV-encoded LANA inducing aneuploidy[J]. PLoS Pathog, 2018,14(9):e1007253. DOI: 10.1371/journal.ppat.1007253.
doi: 10.1371/journal.ppat.1007253 pmid: 30212568 |
[13] |
Sun Z, Jha HC, Robertson ES. Bub1 in complex with LANA recruits PCNA to regulate Kaposi's sarcoma-associated herpesvirus latent replication and DNA translesion synjournal[J]. J Virol, 2015,89(20):10206-10218. DOI: 10.1128/JVI.01524-15.
doi: 10.1128/JVI.01524-15 pmid: 26223641 |
[14] |
Yang S, Yu J, Fan Z, et al. Bub1 facilitates virus entry through endocytosis in a model of drosophila pathogenesis[J]. J Virol, 2018,92(18).pii:e00254-18. DOI: 10.1128/JVI.00254-18.
doi: 10.1128/JVI.00254-18 pmid: 29976667 |
[15] |
Arai E, Gotoh M, Tian Y, et al. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas[J]. Int J Cancer, 2015,137(11):2589-2606. DOI: 10.1002/ijc.29630.
doi: 10.1002/ijc.29630 pmid: 26061684 |
[16] |
Zhang W, Gao L, Wang C, et al. Combining bioinformatics and experiments to idenjpgy and verify key genes with prognostic values in endometrial carcinoma[J]. J Cancer, 2020,11(3):716-732. DOI: 10.7150/jca.35854.
doi: 10.7150/jca.35854 pmid: 31942195 |
[17] |
Davidson B, Nymoen DA, Elgaaen BV, et al. Bub1 mRNA is significantly co-expressed with AURKA and AURKB mRNA in advanced-stage ovarian serous carcinoma[J]. Virchows Arch, 2014,464(6):701-707. DOI: 10.1007/s00428-014-1577-7.
doi: 10.1007/s00428-014-1577-7 |
[18] |
Sun Q, Zhao H, Zhang C, et al. Gene co-expression network reveals shared modules predictive of stage and grade in serous ovarian cancers[J]. Oncotarget, 2017,8(26):42983-42996. DOI: 10.18632/oncotarget.17785.
doi: 10.18632/oncotarget.17785 pmid: 28562334 |
[19] |
Wang Z, Katsaros D, Shen Y, et al. Biological and clinical significance of MAD2L1 and Bub1, genes frequently appearing in expression signatures for breast cancer prognosis[J]. PLoS One, 2015,10(8):e0136246. DOI: 10.1371/journal.pone.0136246.
doi: 10.1371/journal.pone.0136246 pmid: 26287798 |
[20] |
Han JY, Han YK, Park GY, et al. Bub1 is required for maintaining cancer stem cells in breast cancer cell lines[J]. Sci Rep, 2015,5:15993. DOI: 10.1038/srep15993.
doi: 10.1038/srep15993 pmid: 26522589 |
[21] |
Qin S, Long X, Zhao Q, et al. Co-expression network analysis idenjpgied genes associated with cancer stem cell characteristics in lung squamous cell carcinoma[J]. Cancer Invest, 2020,38(1):13-22. DOI: 10.1080/07357907.2019.1697281.
doi: 10.1080/07357907.2019.1697281 pmid: 31770041 |
[22] |
Xu B, Xu T, Liu H, et al. MiR-490-5p suppresses cell proliferation and invasion by targeting Bub1 in hepatocellular carcinoma cells[J]. Pharmacology, 2017,100(5-6):269-282. DOI: 10.1159/000477667.
doi: 10.1159/000477667 pmid: 28810242 |
[23] |
Saurin AT. Kinase and phosphatase cross-talk at the kinetochore[J]. Front Cell Dev Biol, 2018,6:62. DOI: 10.33 89/fcell.2018.00062.
doi: 10.3389/fcell.2018.00062 pmid: 29971233 |
[24] |
Pagotto S, Veronese A, Soranno A, et al. HNRNPL restrains miR-155 targeting of Bub1 to stabilize aberrant karyotypes of transformed cells in chronic lymphocytic leukemia[J]. Cancers (Basel), 2019,11(4).pii:575. DOI: 10.3390/cancers11040575.
doi: 10.3390/cancers11040575 |
[25] |
de Voer RM, Geurts van Kessel A, Weren RD, et al. Germline mutations in the spindle assembly checkpoint genes Bub1 and Bub3 are risk factors for colorectal cancer[J]. Gastroenterology, 2013,145(3):544-547. DOI: 10.1053/j.gastro.2013.06.001.
doi: 10.1053/j.gastro.2013.06.001 |
[26] |
Vargas-Parra GM, González-Acosta M, Thompson BA, et al. Elucidating the molecular basis of MSH2-deficient tumors by combined germline and somatic analysis[J]. Int J Cancer, 2017,141(7):1365-1380. DOI: 10.1002/ijc.30820.
doi: 10.1002/ijc.30820 pmid: 28577310 |
[27] |
Mukherjee A, Joseph C, Craze M, et al. The role of Bub and CDC proteins in low-grade breast cancers[J]. Lancet, 2015,385:S72. DOI: 10.1016/S0140-6736(15)60387-7.
doi: 10.1016/S0140-6736(15)60387-7 pmid: 26312894 |
[28] | Hou SQ, Ouyang M, Brandmaier A, et al. PTEN in the maintenance of genome integrity: from DNA replication to chromosome segregation[J]. Bioessays, 2017,39(10):e1700082. DOI: 10.1002/bies.201700082. |
[29] |
Pussila M, Toronen P, Einarsdottir E, et al. Mlh1 deficiency in normal mouse colon mucosa associates with chromosomally unstable colon cancer[J]. Carcinogenesis, 2018,39(6):788-797. DOI: 10.1093/carcin/bgy056.
doi: 10.1093/carcin/bgy056 pmid: 29701748 |
[30] |
Austria T, Marion C, Yu V, et al. Mechanism of cytokinesis failure in ovarian cystadenomas with defective BRCA1 and P53 pathways[J]. Int J Cancer, 2018,143(11):2932-2942. DOI: 10.1002/ijc.31659.
doi: 10.1002/ijc.31659 pmid: 29978915 |
[31] |
Martinez R, Blasina A, Hallin JF, et al. Mitotic checkpoint kinase Mps1 has a role in normal physiology which impacts clinical utility[J]. PLoS One, 2015,10(9):e0138616. DOI: 10.1371/journal.pone.0138616.
doi: 10.1371/journal.pone.0138616 pmid: 26398286 |
[32] |
Baron AP, von Schubert C, Cubizolles F,, et al. Probing the cataly-tic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524[J]. Elife 2016,5.pii:e12187. DOI: 10.7554/eLife.12187.
doi: 10.7554/eLife.12187 pmid: 26885717 |
[33] |
Siemeister G, Mengel A, Fernandez-Montalvan AE, et al. Inhibition of Bub1 kinase by BAY 1816032 sensitizes tumor cells toward Taxanes, ATR, and PARP inhibitors in vitro and in vivo[J]. Clin Cancer Res, 2019,25(4):1404-1414. DOI: 10.1158/1078-0432.CCR-18-0628.
doi: 10.1158/1078-0432.CCR-18-0628 pmid: 30429199 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||