[1] Baumann M, Krause M, Overgaard J, et al. Radiation oncology in the era of precision medicine[J]. Nat Rev Cancer, 2016, 16(4): 234-249. DOI: 10.1038/nrc.2016.18.
[2] 刘斌亮. 循环肿瘤DNA在乳腺癌内分泌治疗耐药中的应用[J]. 国际肿瘤学杂志, 2017, 44(10): 779-782. DOI: 10.3760/cma.j.issn.1673-422X.2017.10.014.
[3] Yao W, Mei C, Nan X, et al. Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: a qualitative study[J]. Gene, 2016, 590(1): 142-148. DOI: 10.1016/j.gene.2016.06.033.
[4] Ulrich BC, Paweletz CP. Cellfree DNA in oncology: gearing up for clinic[J]. Ann Lab Med, 2018, 38(1): 18. DOI: 10.3343/alm.2018.38.1.1.
[5] Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early and latestage human malignancies[J]. Sci Transl Med, 2014, 6(224): 224ra24. DOI: 10.1126/ scitranslmed.3007094.
[6] Zhao L, Fong AHW, Liu N, et al. Molecular subtyping of nasopharyngeal carcinoma (NPC) and a microRNAbased prognostic model for distant metastasis[J]. J Biomed Sci, 2018, 25(1): 16. DOI: 10.1186/s1292901804175.
[7] Chen QY, Guo SY, Tang LQ, et al. Combination of tumor volume and EpsteinBarr virus DNA improved prognostic stratification of stage Ⅱ nasopharyngeal carcinoma in the IMRT era: a largescale cohort study[J]. Cancer Res Treat, 2017, In press. DOI: 10.4143/crt.2017.237.
[8] Chen M, Yin L, Wu J, et al. Impact of plasma EpsteinBarr virusDNA and tumor volume on prognosis of locally advanced nasopharyngeal carcinoma[J]. Biomed Res Int, 2015, 2015: 617949. DOI: 10.1155/2015/ 617949.
[9] Chen WH, Tang LQ, Guo SS, et al. Prognostic value of plasma EpsteinBarr virus DNA for local and regionally advanced nasopharyngeal carcinoma treated with cisplatinbased concurrent chemoradiotherapy in intensitymodulated radiotherapy era[J]. Medicine (Baltimore), 2016, 95(5): e2642. DOI: 10.1097/MD.0000000000002642.
[10] Ben Lassoued A, Nivaggioni V, Gabert J. Minimal residual disease testing in hematologic malignancies and solid cancer[J]. Expert Rev Mol Diagn, 2014, 14(6): 699-712. DOI: 10.1586/14737159.2014.927311.
[11] Ahn SM, Chan JY, Zhang Z, et al. Saliva and plasma quantitative polymerase chain reactionbased detection and surveillance of human papillomavirusrelated head and neck cancer[J]. JAMA Otolaryngol Head Neck Surg, 2014, 140(9): 846-854. DOI: 10.1001/jamaoto.2014.1338.
[12] Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage[J]. Nat Med, 2014, 20(5): 548-554. DOI: 10.1038/nm.3519.
[13] Chaudhuri AA, Binkley MS, Osmundson EC, et al. Predicting radiotherapy responses and treatment outcomes through analysis of circulating tumor DNA[J]. Semin Radiat Oncol, 2015, 25(4): 305-312. DOI: 10.1016/j.semradonc.2015.05.001.
[14] Dawson SJ, Tsui DW, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer[J]. N Engl J Med, 2013, 368(13): 1199-1209. DOI: 10.1056/ NEJMoa1213261.
[15] Bidard FC, Madic J, Mariani P, et al. Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in metastatic uveal melanoma[J]. Int J Cancer, 2014, 134(5): 1207-1213. DOI: 10.1002/ijc.28436.
[16] Dahlstrom KR, Li G, Hussey CS, et al. Circulating human papillomavirus DNA as a marker for disease extent and recurrence among patients with oropharyngeal cancer[J]. Cancer, 2015, 121(19): 34553464. DOI: 10.1002/cncr.29538.
[17] JamalHanjani M, Wilson GA, McGranahan N, et al. Tracking the evolution of nonsmallcell lung cancer[J]. N Engl J Med, 2017, 376(22): 2109-2121. DOI: 10.1056/ NEJMoa1616288.
[18] Jeong Y, Hoang NT, Lovejoy A, et al. Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiation resistance[J]. Cancer Discov, 2017, 7(1): 86-101. DOI: 10.1158/ 2159-8290.CD160127.
[19] Abbosh C, Birkbak NJ, Wilson GA, et al. Phylogenetic ctDNA analysis depicts earlystage lung cancer evolution[J]. Nature, 2017, 545(7655): 446-451. DOI: 10.1038/nature22364. |