[1] Cheli Y, Giuliano S, Fenouille N, et al. Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells[J]. Oncogene, 2012, 31(19): 2461-2470. DOI: 10.1038/onc.2011.425.
[2] Widmer DS, Cheng PF, Eichhoff OM, et al. Systematic classification of melanoma cells by phenotype-specific gene expression mapping[J]. Pigment Cell Melanoma Res, 2012, 25(3): 343-353. DOI: 10.1111/j.1755-148X.2012.00986.x.
[3] Wang C, Zhao L, Su Q, et al. Phosphorylation of MITF by AKT affects its downstream targets and causes TP53-dependent cell senescence[J]. Int J Biochem Cell Biol, 2016, 80: 132-142. DOI: 10.1016/j.biocel.2016.09.029.
[4] Haq R, Yokoyama S, Hawryluk EB, et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition[J]. Proc Natl Acad Sci USA, 2013, 110(11): 4321-4326. DOI: 10.1073/pnas.1205575110.
[5] Pan L, Ma X, Wen B, et al. Microphthalmia-associated transcription factor/T-box factor-2 axis acts through Cyclin D1 to regulate melanocyte proliferation[J]. Cell Prolif, 2015, 48(6): 631-642. DOI: 10.1111/cpr.12227.
[6] Margue C, Philippidou D, Reinsbach SE, et al. New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion[J]. PLoS One, 2013, 8(9): e73473. DOI: 10.1371/journal.pone.0073473.
[7] Golan T, Messer AR, AmitaiLange A, et al. Interactions of melanoma cells with distal keratinocytes trigger metastasis via Notch signaling inhibition of MITF[J]. Mol Cell, 2015, 59(4): 664-676. DOI: 10.1016/j.molcel.2015.06.028.
[8] Yan D, Dong XD, Chen X, et al. Role of microRNA-182 in posterior uveal melanoma: regulation of tumor development through MITF, BCL2 and cyclin D2[J]. PLoS One, 2012, 7(7): e40967. DOI: 10.1371/journal.pone.0040967.
[9] Mazar J, DeYoung K, Khaitan D, et al. The regulation of miRNA-211 expression and its role in melanoma cell invasiveness[J]. PLoS One, 2010, 5(11): e13779. DOI: 10.1371/journal.pone.0013779.
[10] Luo C, Merz PR, Chen Y, et al. MiR-101 inhibits melanoma cell invasion and proliferation by targeting MITF and EZH2[J]. Cancer Lett, 2013, 341(2): 240-247. DOI: 10.1016/j.canlet.2013.08.021.
[11] Goswami S, Tarapore RS, Teslaa JJ, et al. MicroRNA-340-mediated degradation of microphthalmia-associated transcription factor mRNA is inhibited by the coding region determinantbinding protein[J]. J Biol Chem, 2010, 285(27): 20532-20540. DOI: 10.1074/jbc.M110.109298.
[12] Gallagher SJ, Rambow F, Kumasaka M, et al. Beta-catenin inhibits melanocyte migration but induces melanoma metastasis[J]. Oncogene, 2013, 32(17): 22302238. DOI: 10.1038/onc.2012.229.
[13] Kaur A, Webster MR, Marchbank K, et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance[J]. Nature, 2016, 532(7598): 250-254. DOI: 10.1038/nature17392.
[14] Seong I, Min HJ, Lee JH, et al. Sox10 controls migration of B16F10 melanoma cells through multiple regulatory target genes[J]. PLoS One, 2012, 7(2): e31477. DOI: 10.1371/journal.pone.0031477.
[15] Dadras SS, Lin RJ, Razavi G, et al. A novel role for microphthalmia-associated transcription factore-regulated pigment epithelium-derived factor during melanoma progression[J]. Am J Pathol, 2015, 185(1): 252-265. DOI: 10.1016/j.ajpath.2014.09.012.
[16] Nicholas C, Yang J, Peters SB, et al. PRMT5 is upregulated in malignant and metastatic melanoma and regulates expression of MITF and p27(Kip1.)[J]. PLoS One, 2013, 8(9): e74710. DOI: 10.1371/journal.pone.0074710.
[17] Pierrat MJ, Marsaud V, Mauviel A, et al. Expression of microphthalmiaassociated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factorβ[J]. J Biol Chem, 2012, 287(22): 17996-18004. DOI: 10.1074/jbc.M112.358341.
[18] Porcelli L, Guida G, Quatrale AE, et al. Aurora kinase B inhibition reduces the proliferation of metastatic melanoma cells and enhances the response to chemotherapy[J]. J Transl Med, 2015, 13: 26. DOI: 10.1186/s12967-015-0385-4.
[19] Khoja L, Shenjere P, Hodgson C, et al. Prevalence and heteroge-neity of circulating tumour cells in metastatic cutaneous melanoma[J]. Melanoma Res, 2014, 24(1): 40-46. DOI: 10.1097/CMR.0000000000000025.
[20] WardwellOzgo J, Dogruluk T, Gifford A, et al. HOXA1 drives me-lanoma tumor growth and metastasis and elicits an invasion gene expression signature that prognosticates clinical outcome[J]. Oncogene, 2014, 33(8): 1017-1026. DOI: 10.1038/onc.2013.30.
[21] Naffouje S, Naffouje R, Bhagwandin S, et al. Microphthalmia transcription factor in malignant melanoma predicts occult sentinel lymph node metastases and survival[J]. Melanoma Res, 2015, 25(6): 496-502. DOI: 10.1097/CMR.0000000000000195.
[22] Xia J, Wang Y, Li F, et al. Expression of microphthalmia transcription factor, S100 protein, and HMB-45 in malignant melanoma and pigmented nevi[J]. Biomed Rep, 2016, 5(3): 327-331. DOI: 10.3892/br.2016.732.
[23] Guo R, Franco-Palacios M, Russell M, et al. Micropthalmia transcription factor (MITF) as a diagnostic marker for metastatic melanomas negative for other melanoma markers[J]. Int J Clin Exp Pathol, 2013, 6(8): 1658-1664.
[24] Stemig M, Astelford K, Emery A, et al. Deletion of histone deacetylase 7 in osteoclasts decreases bone mass in mice by interactions with MITF[J]. PLoS One, 2015, 10(4): e0123843. DOI: 10.1371/journal.pone.0123843.
[25] Qi X, Hong J, Chaves L, et al. Antagonistic regulation by the transcription factors C/EBPα and MITF specifies basophil and mast cell fates[J]. Immunity, 2013, 39(1): 97-110. DOI: 10.1016/j.immuni.2013.06.012.
[26] Guo J, Zhang JF, Wang WM, et al. MicroRNA-218 inhibits melanogenesis by directly suppressing microphthalmia-associated transcription factor expression[J]. RNA Biol, 2014, 11(6): 732-741. |