Journal of International Oncology ›› 2018, Vol. 45 ›› Issue (12): 731-734.doi: 10.3760/cma.j.issn.1673-422X.2018.12.006
Previous Articles Next Articles
Yang Zhixian, Hou Fei, Li Haoyu, Deng Zhiyong
Online:
2018-12-08
Published:
2019-02-01
Contact:
Deng Zhiyong
E-mail:13888158986@163.com
Supported by:
Yunnan Provincial Health and Family Planning Commission Medical Discipline Leadership Program (D-201649); Yunnan Provincial Science and Technology DepartmentKunming Medical University Fund for Basic Joint Project [2017FE467(-080)]
Yang Zhixian, Hou Fei, Li Haoyu, Deng Zhiyong. Research progress of TRIM14 in malignant tumors[J]. Journal of International Oncology, 2018, 45(12): 731-734.
[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115132. DOI: 10.3322/caac.21338. [2] Hirose S, Nishizumi H, Sakano H. Pub, a novel PU.1 binding protein, regulates the transcriptional activity of PU.1[J]. Biochem Biophys Res Commun, 2003, 311(2): 351360. DOI: 10.1016/j.bbrc.2003.09.212. [3] 杨星星, 王凯, 陈晓娟, 等. 线粒体抗病毒信号蛋白(MAVS)在宿主天然免疫信号通路中的调节作用[J]. 生物化学与生物物理进展, 2013, 40(5): 397405. DOI: 10.3724/SP.J.1206.2012.00513. [4] Zhou Z, Jia X, Xue Q, et al. TRIM14 is a mitochondrial adaptor that facilitates retinoic acidinducible geneⅠlike receptormediated innate immune response[J]. Proc Natl Acad Sci U S A, 2014, 111(2): E245E254. DOI: 10.1073/pnas.1316941111. [5] 周卓, 贾雪, 薛清华, 等. TRIM14蛋白参与抗病毒天然免疫反应[C]. 第九届全国免疫学学术大会, 2014, 中国山东济南. [6] Nenasheva VV, Kovaleva GV, Uryvaev LV, et al. Enhanced expression of trim14 gene suppressed Sindbis virus reproduction and modulated the transcription of a large number of genes of innate immunity[J]. Immunol Res, 2015, 62(3): 255262. DOI: 10.1007/s1202601586531. [7] Wang S, Chen Y, Li C, et al. TRIM14 inhibits hepatitis C virus infection by SPRY domaindependent targeted degradation of the viral NS5A protein[J]. Sci Rep, 2016, 6: 323336. DOI: 10.1038/srep32336. [8] Tan P, He L, Cui J, et al. Assembly of the WHIPTRIM14PPP6C mitochondrial complex promotes RIGⅠmediated antiviral signaling[J]. Mol Cell, 2017, 68(2): 293307.e5. DOI: 10.1016/j.molcel.2017.09.035. [9] Nenasheva VV, Kovaleva GV, Khaidarova NV, et al. Trim14 overexpression causes the same transcriptional changes in mouse embryonic stem cells and human HEK293 cells[J]. In Vitro Cell Dev Biol Anim, 2014, 50(2): 121128. DOI: 10.1007/s1162601396834. [10] 王权, 孙文逵, 施毅. 转录因子PU.1与机体免疫功能的相关性及其研究进展[J]. 医学研究生学报, 2013, 26(10): 10961100. DOI: 10.16571/j.cnki.10088199.2013.10.004. [11] Su X, Wang J, Chen W, et al. Overexpression of TRIM14 promotes tongue squamous cell carcinoma aggressiveness by activating the NFkappaB signaling pathway[J]. Oncotarget, 2016, 7(9): 99399950. DOI: 10.18632/oncotarget.6941. [12] Wang Y, Lin Z, Sun L, et al. Akt/Ezrin Tyr353/NFkappaB pathway regulates EGFinduced EMT and metastasis in tongue squamous cell carcinoma[J]. Br J Cancer, 2014, 110(3): 695705. DOI: 10.1038/bjc.2013.770. [13] Grille SJ, Bellacosa A, Upson J, et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines[J]. Cancer Res, 2003, 63(9): 21722178. [14] Wang X, Guo H, Yao B, et al. miR15b inhibits cancerinitiating cell phenotypes and chemoresistance of cisplatin by targeting TRIM14 in oral tongue squamous cell cancer[J]. Oncol Rep, 2017, 37(5): 27202726. DOI: 10.3892/or.2017.5532. [15] Wang T, Ren Y, Liu R, et al. miR1955p suppresses the proliferation, migration, and invasion of oral squamous cell carcinoma by targeting TRIM14[J]. Biomed Res Int, 2017, 2017: 7378148. DOI: 10.1155/2017/7378148. [16] Xu G, Guo Y, Xu D, et al. TRIM14 regulates cell proliferation and invasion in osteosarcoma via promotion of the AKT signaling pathway[J]. Sci Rep, 2017, 7: 42411. DOI: 10.1038/srep42411. [17] Kong L, Schafer G, Bu H, et al. Lamin A/C protein is overexpressed in tissueinvading prostate cancer and promotes prostate cancer cell growth, migration and invasion through the PI3K/AKT/PTEN pathway[J]. Carcinogenesis, 2012, 33(4): 751759. DOI: 10.1093/carcin/bgs022. [18] Daniele S, Costa B, Zappelli E, et al. Combined inhibition of AKT/mTOR and MDM2 enhances Glioblastoma Multiforme cell apoptosis and differentiation of cancer stem cells[J]. Sci Rep, 2015, 5: 9956. DOI: 10.1038/srep09956. [19] Shen CC, Cui XY, He Y, et al. High phosphorylation status of AKT/mTOR signal in DESI2reduced pancreatic ductal adenocarcinoma[J]. Pathol Oncol Res, 2015, 21(2): 267272. DOI: 10.1007/s1225301498173. [20] Chen J, Bai M, Ning C, et al. Gankyrin facilitates folliclestimulating hormonedriven ovarian cancer cell proliferation through the PI3K/AKT/HIF1alpha/cyclin D1 pathway[J]. Oncogene, 2016, 35(19): 25062517. DOI: 10.1038/onc.2015.316. [21] Yu GH, Li AM, Li X, et al. Bispecific antibody suppresses osteosarcoma aggressiveness through regulation of NFkappaB signaling pathway[J]. Tumour Biol, 2017, 39(6): 1010428317705572. DOI: 10.1177/1010428317705572. [22] Dong B, Zhang W. High levels of TRIM14 are associated with poor prognosis in hepatocellular carcinoma[J]. Oncol Res Treat, 2018, 41(3): 129134. DOI: 10.1159/000485625. [23] Hu G, Pen W, Wang M. TRIM14 promotes breast cancer cell proliferation by inhibiting apoptosis[J]. Oncol Res, 2018, In press. DOI: 10.3727/096504018X15214994641786. [24] Juin P, Geneste O, Gautier F, et al. Decoding and unlocking the BCL2 dependency of cancer cells[J]. Nat Rev Cancer, 2013, 13(7): 455465. DOI: 10.1038/nrc3538. [25] HamacherBrady A, Brady NR. Bax/Bakdependent, Drp1independent targeting of Xlinked inhibitor of apoptosis protein (XIAP) into inner mitochondrial compartments counteracts Smac/DIABLOdependent effector caspase activation[J]. J Biol Chem, 2015, 290(36): 2200522018. DOI: 10.1074/jbc.M115.643064. [26] Tai WT, Cheng AL, Shiau CW, et al. Signal transducer and activator of transcription 3 is a major kinaseindependent target of sorafenib in hepatocellular carcinoma[J]. J Hepatol, 2011, 55(5): 10411048. DOI: 10.1016/j.jhep.2011.01.047. [27] 艾美玲. TRIM14通过调控HBP通路抑制非小细胞肺癌细胞生长[D]. 南昌: 南昌大学, 2016. [28] Ruan HB, Singh JP, Li MD, et al. Cracking the OGlcNAc code in metabolism[J]. Trends Endocrinol Metab, 2013, 24(6): 301309. DOI: 10.1016/j.tem.2013.02.002. [29] Yehezkel G, Cohen L, Kliger A, et al. Olinked betaNacetylglucosaminylation (OGlcNAcylation) in primary and metastatic colorectal cancer clones and effect of NacetylbetaDglucosaminidase silencing on cell phenotype and transcriptome[J]. J Biol Chem, 2012, 287(34): 2875528769. DOI: 10.1074/jbc.M112.345546. [30] Oikari S, Makkonen K, Deen AJ, et al. Hexosamine biosynthesis in keratinocytes: roles of GFAT and GNPDA enzymes in the maintenance of UDPGlcNAc content and hyaluronan synthesis[J]. Glycobiology, 2016, 26(7): 710722. DOI: 10.1093/glycob/cww019. [31] Hai J, Zhu CQ, Wang T, et al. TRIM14 is a putative tumor suppressor and regulator of innate immune response in nonsmall cell lung cancer[J]. Sci Rep, 2017, 7: 39692. DOI: 10.1038/srep39692. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||