
Journal of International Oncology ›› 2026, Vol. 53 ›› Issue (3): 182-186.doi: 10.3760/cma.j.cn371439-20250919-00030
• Review • Previous Articles Next Articles
Ma Zhuaxiji1, Min Xiyun1, Guan Quanlin2(
)
Received:2025-09-19
Online:2026-03-08
Published:2026-02-09
Contact:
Guan Quanlin
E-mail:guanql@lzu.edu.cn
Ma Zhuaxiji, Min Xiyun, Guan Quanlin. Immune remodeling strategies and clinical progress of the transformation of gastric cold tumors into hot tumors[J]. Journal of International Oncology, 2026, 53(3): 182-186.
| [1] |
Thrift AP, Wenker TN, El-Serag HB. Global burden of gastric cancer: epidemiological trends, risk factors, screening and prevention[J]. Nat Rev Clin Oncol, 2023, 20(5): 338-349. DOI: 10.1038/s41571-023-00747-0.
pmid: 36959359 |
| [2] |
Lv C, Chen T, Li J, et al. A comprehensive analysis of molecular characteristics of hot and cold tumor of gastric cancer[J]. Cancer Immunol Immunother, 2025, 74(3): 102. DOI: 10.1007/s00262-025-03954-z.
pmid: 39904894 |
| [3] |
Wu LW, Jang SJ, Shapiro C, et al. Diffuse gastric cancer: a comprehensive review of molecular features and emerging therapeutics[J]. Target Oncol, 2024, 19(6): 845-865. DOI: 10.1007/s11523-024-01097-2.
pmid: 39271577 |
| [4] | Bou-Dargham MJ, Sha L, Sarker DB, et al. TCGA RNA-Seq and tumor-infiltrating lymphocyte imaging data reveal cold tumor signatures of invasive ductal carcinomas and estrogen receptor-positive human breast tumors[J]. Int J Mol Sci, 2023, 24(11): 9355. DOI: 10.3390/ijms24119355. |
| [5] | Wu B, Zhang B, Li B, et al. Cold and hot tumors: from molecular mechanisms to targeted therapy[J]. Signal Transduct Target Ther, 2024, 9(1): 274. DOI: 10.1038/s41392-024-01979-x. |
| [6] | Sang M, Ge J, Ge J, et al. Immune regulatory genes impact the hot/cold tumor microenvironment, affecting cancer treatment and patient outcomes[J]. Front Immunol, 2024, 15: 1382842. DOI: 10.3389/fimmu.2024.1382842. |
| [7] |
Derks S, de Klerk LK, Xu X, et al. Characterizing diversity in the tumor-immune microenvironment of distinct subclasses of gastroesophageal adenocarcinomas[J]. Ann Oncol, 2020, 31(8): 1011-1020. DOI: 10.1016/j.annonc.2020.04.011.
pmid: 32387455 |
| [8] |
Cristescu R, Lee J, Nebozhyn M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes[J]. Nat Med, 2015, 21(5): 449-456. DOI: 10.1038/nm.3850.
pmid: 25894828 |
| [9] | Qiu MZ, He CY, Lu SX, et al. Prospective observation: clinical utility of plasma epstein-barr virus DNA load in EBV-associated gastric carcinoma patients[J]. Int J Cancer, 2020, 146(1): 272-280. DOI: 10.1002/ijc.32490. |
| [10] | Puliga E, Corso S, Pietrantonio F, et al. Microsatellite instability in gastric cancer: between lights and shadows[J]. Cancer Treat Rev, 2021, 95: 102175. DOI: 10.1016/j.ctrv.2021.102175. |
| [11] | Pietrantonio F, Randon G, Di Bartolomeo M, et al. Predictive role of microsatellite instability for PD-1 blockade in patients with advanced gastric cancer: a meta-analysis of randomized clinical trials[J]. ESMO Open, 2021, 6(1): 100036. DOI: 10.1016/j.esmoop.2020.100036. |
| [12] | Alsina M, Arrazubi V, Diez M, et al. Current developments in gastric cancer: from molecular profiling to treatment strategy[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(3): 155-170. DOI: 10.1038/s41575-022-00703-w. |
| [13] |
Ippolito MR, Martis V, Martin S, et al. Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy[J]. Dev Cell, 2021, 56(17): 2440-2454.e6. DOI: 10.1016/j.devcel.2021.07.006.
pmid: 34352223 |
| [14] |
Shi D, Yang Z, Cai Y, et al. Research advances in the molecular classification of gastric cancer[J]. Cell Oncol (Dordr), 2024, 47(5): 1523-1536. DOI: 10.1007/s13402-024-00951-9.
pmid: 38717722 |
| [15] |
Wang Q, Xie Q, Liu Y, et al. Clinical characteristics and prognostic significance of TCGA and ACRG classification in gastric cancer among the Chinese population[J]. Mol Med Rep, 2020, 22(2): 828-840. DOI: 10.3892/mmr.2020.11183.
pmid: 32468041 |
| [16] |
Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing[J]. Annu Rev Immunol, 2013, 31: 443-473. DOI: 10.1146/annurev-immunol-032712-095910.
pmid: 23298205 |
| [17] | Fan T, Zhang M, Yang J, et al. Therapeutic cancer vaccines: advancements, challenges, and prospects[J]. Signal Transduct Target Ther, 2023, 8(1): 450. DOI: 10.1038/s41392-023-01674-3. |
| [18] | Kim BJ, Abdelfattah NS, Hostetler A, et al. Progress in cancer vaccines enabled by nanotechnology[J]. Nat Nanotechnol, 2025, 20(11): 1558-1572. DOI: 10.1038/s41565-025-02021-z. |
| [19] |
Zhang B, Wu Q, Li B, et al. m6A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer[J]. Mol Cancer, 2020, 19(1): 53. DOI: 10.1186/s12943-020-01170-0.
pmid: 32164750 |
| [20] |
McLaughlin M, Patin EC, Pedersen M, et al. Inflammatory micro-environment remodelling by tumour cells after radiotherapy[J]. Nat Rev Cancer, 2020, 20(4): 203-217. DOI: 10.1038/s41568-020-0246-1.
pmid: 32161398 |
| [21] | Lu H, Lou H, Wengert G, et al. Tumor and local lymphoid tissue interaction determines prognosis in high-grade serous ovarian cancer[J]. Cell Rep Med, 2023, 4(7): 101092. DOI: 10.1016/j.xcrm.2023.101092. |
| [22] |
Deng R, Zhang P, Liu W, et al. HDAC is indispensable for IFN-γ- induced B7-H1 expression in gastric cancer[J]. Clin Epigenetics, 2018, 10(1): 153. DOI: 10.1186/s13148-018-0589-6.
pmid: 30537988 |
| [23] | Ming ZH, Zhang YQ, Song L, et al. Rare earth nanoprobes for targeted delineation of triple negative breast cancer and enhancement of radioimmunotherapy[J]. Adv Sci, 2024, 11(29): e2309992. DOI: 10.1002/advs.202309992. |
| [24] | Cao W, Chen J, Fu Y, et al. A next-generation anti-CTLA-4 probody mitigates toxicity and enhances anti-tumor immunity in mice[J]. Nat Commun, 2025, 16(1): 9029. DOI: 10.1038/s41467-025-64081-y. |
| [25] |
Li X, Geng S, Chen Q, et al. Disrupting tumor lactate homeostasis to sensitize chemo-immunotherapy using a glucose-disguised lactate interceptor[J]. ACS Nano, 2025, 19(23): 21556-21570. DOI: 10.1021/acsnano.5c03545.
pmid: 40472333 |
| [26] | Weber R, Riester Z, Hüser L, et al. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma[J]. J Immunother Cancer, 2020, 8(2): e000949. DOI: 10.1136/jitc-2020-000949. |
| [27] | Papait A, Romoli J, Stefani FR, et al. Fight the cancer, hit the CAF![J]. Cancers (Basel), 2022, 14(15): 3570. DOI: 10.3390/cancers14153570. |
| [28] | Zhu B, Cheng L, Huang B, et al. Central role of hypoxia-inducible factor-1α in metabolic reprogramming of cancer cells: a review[J]. Medicine (Baltimore), 2024, 103(44): e40273. DOI: 10.1097/MD.0000000000040273. |
| [29] | Zhou L, Zhang W, Hu X, et al. Metabolic reprogramming of cancer-associated fibroblast in the tumor microenvironment: from basics to clinic[J]. Clin Med Insights Oncol, 2024, 18: 11795549241287058. DOI: 10.1177/11795549241287058. |
| [30] | Zhou K, Hu N, Hong Y, et al. An immune-related prognostic signature predicts overall survival in stomach adenocarcinomas[J]. Front Genet, 2022, 13: 903393. DOI: 10.3389/fgene.2022.903393. |
| [31] | Chang X, Ge X, Zhang Y, et al. The current management and biomarkers of immunotherapy in advanced gastric cancer[J]. Medicine (Baltimore), 2022, 101(21): e29304. DOI: 10.1097/MD.0000000000029304. |
| [32] | Gao X, Ji K, Jia Y, et al. Cadonilimab with chemotherapy in HER2-negative gastric or gastroesophageal junction adenocarcinoma: the phase 1b/2 COMPASSION-04 trial[J]. Nat Med, 2024, 30(7): 1943-1951. DOI: 10.1038/s41591-024-03007-5. |
| [33] | Gao J, Wang Z, Jiang W, et al. CLDN18.2 and 4-1BB bispecific antibody givastomig exerts antitumor activity through CLDN18.2-expressing tumor-directed T-cell activation[J]. J Immunother Cancer, 2023, 11(6): e006704. DOI: 10.1136/jitc-2023-006704. |
| [34] | Ferreira CS, Babitzki G, Klaman I, et al. Predictive potential of angiopoietin-2 in a mCRC subpopulation treated with vanucizumab in the McCAVE trial[J]. Front Oncol, 2023, 13: 1157596. DOI: 10.3389/fonc.2023.1157596. |
| [35] | Christodoulidis G, Koumarelas KE, Kouliou MN. Revolutionizing gastric cancer treatment: the potential of immunotherapy[J]. World J Gastroenterol, 2024, 30(4): 286-289. DOI: 10.3748/wjg.v30.i4.286. |
| [36] |
Zhu G, Foletti D, Liu X, et al. Author correction: targeting CLDN18.2 by CD3 bispecific and ADC modalities for the treatments of gastric and pancreatic cancer[J]. Sci Rep, 2019, 9(1): 16735. DOI: 10.1038/s41598-019-53130-4.
pmid: 31700121 |
| [37] | Akeso. A study of mRNA vaccines AK154 monotherapy or in combination with AK104/AK112, and sequential mFOLFIRINOX in surgically resected PDAC[EB/OL]. (2025-04-06)[2025-07-25]. https://clinicaltrials.gov/study/NCT06913218. |
| [38] | Starzer AM, Preusser M, Berghoff AS. Immune escape mechanisms and therapeutic approaches in cancer: the cancer-immunity cycle[J]. Ther Adv Med Oncol, 2022, 14: 17588359221096219. DOI: 10.1177/17588359221096219. |
| [39] |
Lin Y, Jing X, Chen Z, et al. Histone deacetylase-mediated tumor microenvironment characteristics and synergistic immunotherapy in gastric cancer[J]. Theranostics, 2023, 13(13): 4574-4600. DOI: 10.7150/thno.86928.
pmid: 37649598 |
| [40] | Wei X, Liu J, Cheng J, et al. Super-enhancer-driven ZFP36L1 promotes PD-L1 expression in infiltrative gastric cancer[J]. Elife, 2024, 13: RP96445. DOI: 10.7554/eLife.96445. |
| [41] | Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy[J]. Int J Mol Sci, 2020, 21(9): 3233. DOI: 10.3390/ijms21093233. |
| [42] | Liu J, Yuan Q, Guo H, et al. Deciphering drug resistance in gastric cancer: potential mechanisms and future perspectives[J]. Biomed Pharmacother, 2024, 173: 116310. DOI: 10.1016/j.biopha.2024.116310. |
| [43] | Gao YX, Guo XJ, Lin B, et al. Targeting LHPP in neoadjuvant chemotherapy resistance of gastric cancer: insights from single-cell and multi-omics data on tumor immune microenvironment and stemness characteristics[J]. Cell Death Dis, 2025, 16(1): 306. DOI: 10.1038/s41419-025-07614-z. |
| [44] | Lin JX, Lian NZ, Gao YX, et al. m6A methylation mediates LHPP acetylation as a tumour aerobic glycolysis suppressor to improve the prognosis of gastric cancer[J]. Cell Death Dis, 2022, 13(5): 463. DOI: 10.1038/s41419-022-04859-w. |
| [45] |
Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research[J]. Public Health Rep, 1985, 100(2): 126-131.
pmid: 3920711 |
| [46] | Gustafson MP, Wheatley-Guy CM, Rosenthal AC, et al. Exercise and the immune system: taking steps to improve responses to cancer immunotherapy[J]. J Immunother Cancer, 2021, 9(7): e001872. DOI: 10.1136/jitc-2020-001872. |
| [47] |
Pedersen L, Idorn M, Olofsson GH, et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution[J]. Cell Metab, 2016, 23(3): 554-562. DOI: 10.1016/j.cmet.2016.01.011.
pmid: 26895752 |
| [48] | Hapuarachi B, Danson S, Wadsley J, et al. Exercise to transform tumours from cold to hot and improve immunotherapy responsiveness[J]. Front Immunol, 2023, 14: 1335256. DOI: 10.3389/fimmu.2023.1335256. |
| [49] | Wang M, Yang G, Tian Y, et al. The role of the gut microbiota in gastric cancer: the immunoregulation and immunotherapy[J]. Front Immunol, 2023, 14: 1183331. DOI: 10.3389/fimmu.2023.1183331. |
| [1] | Qu Zhenjie, Cui Qin. Research of the mechanism of lncRNA FGD5-AS1/miR-154-5p/WNT5A signaling pathway in regulating proliferation and migration of paclitaxel-resistant gastric cancer cells [J]. Journal of International Oncology, 2026, 53(3): 137-143. |
| [2] | Ta Na, Han Yun, Long Rui, Hu Jun. Influence of the expression profile characteristics of APO and ILF on the surgical prognosis in patients with locally advanced gastric cancer [J]. Journal of International Oncology, 2026, 53(3): 150-156. |
| [3] | Laibijiang Wusiman, Song Dingding, Zhang Wenbin. Effect of SPART on the proliferation and migration capabilities of gastric cancer cell through lipophagy [J]. Journal of International Oncology, 2026, 53(2): 73-78. |
| [4] | Arya Ehmet, Nuriman Samat, Wang Tingting. Analysis of the correlation between nutritional status and preoperative gastric morphology and functional characteristics in patients with gastric cancer after radical gastrectomy [J]. Journal of International Oncology, 2026, 53(2): 87-92. |
| [5] | Wang Yu, Li Yuanfei, Guo Yuntong. Research progress of the immunoscore system in gastric cancer [J]. Journal of International Oncology, 2026, 53(1): 62-64. |
| [6] | Li Guangxin, Quan Huijuan, Gao Zhijuan, Wang Xiaojun, Li Liang, Dong Qian, Miao Yongtao, Liu Dongsheng. Correlation between serum levels of HAMP, SPP1, RGS2 and clinical pathological characteristics of gastric cancer patients and their predictive value for postoperative recurrence or metastasis [J]. Journal of International Oncology, 2025, 52(8): 502-507. |
| [7] | Liu Qianyi, Dong Hongmin, Wang Wenling, Wang Gang, Chen Wanghua. Clinical efficacy and safety of radiotherapy combined with chemotherapy and immunotherapy for HER2-negative locally advanced or advanced gastric cancer [J]. Journal of International Oncology, 2025, 52(4): 209-216. |
| [8] | Ji Haitao, Wang Yanfeng, Liu Yongcheng, Hao Nan. Expression and clinical significance of DHCR7 in gastric cancer based on bioinformatics analysis [J]. Journal of International Oncology, 2025, 52(2): 94-100. |
| [9] | Liu Pingping, Wang Junyi, Lin Zhiwei, Chen Dachao. Analysis of factors influencing the prognosis of patients with postoperative peritoneal metastasis of gastric cancer [J]. Journal of International Oncology, 2025, 52(12): 764-769. |
| [10] | Zhang Shuai, Liu Liangliang, Huang Di, Sheng Ru, Qi Mengyao, Li Shuguang. Effects of circRNA-15430 targeting miR-10 on proliferation and invasion of gastric cancer cells [J]. Journal of International Oncology, 2025, 52(11): 673-679. |
| [11] | Tan Rongjian, Ou Wenting, Zhai Jiawei, Quan Zhenhao, Sun Lijun, Zhou Caijin. Effects of RRM2 on malignant biological behavior and aerobic glycolysis of gastric cancer cells by regulating CDK1 [J]. Journal of International Oncology, 2025, 52(1): 23-30. |
| [12] | Wu Yang, Li Tian, Zhang Runbing, Shi Tingting, Gao Chun, Zheng Xiaofeng, Zhang Jiucong. Research progress in immunotherapy and targeted therapy for gastric cancer and esophagogastric junction cancer [J]. Journal of International Oncology, 2024, 51(9): 595-600. |
| [13] | Liu Wenhui, Yin Ping, Qi Jie. Diagnostic value of detection of serum G-17,sB7-H3,and DKK1 for early gastric cancer [J]. Journal of International Oncology, 2024, 51(8): 498-503. |
| [14] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
| [15] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||