Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (3): 179-182.doi: 10.3760/cma.j.cn371439-20230105-00035
• Reviews • Previous Articles Next Articles
Wang Yaqian1, Du Yiwei1, Wang Xing1, Jia Junmei2()
Received:
2023-01-05
Revised:
2023-01-14
Online:
2023-03-08
Published:
2023-04-12
Contact:
Jia Junmei, Email: Wang Yaqian, Du Yiwei, Wang Xing, Jia Junmei. Prognostic predictors of immunotherapy in patients with small cell lung cancer[J]. Journal of International Oncology, 2023, 50(3): 179-182.
[1] |
Wang S, Zimmermann S, Parikh K, et al. Current diagnosis and management of small-cell lung cancer[J]. Mayo Clin Proc, 2019, 94(8): 1599-1622. DOI: 10.1016/j.mayocp.2019.01.034.
doi: S0025-6196(19)30126-0 pmid: 31378235 |
[2] |
Yin X, Li Y, Wang H, et al. Small cell lung cancer transformation: from pathogenesis to treatment[J]. Semin Cancer Biol, 2022, 86(Pt 2): 595-606. DOI: 10.1016/j.semcancer.2022.03.006.
doi: 10.1016/j.semcancer.2022.03.006 pmid: 35276343 |
[3] |
Rudin CM, Brambilla E, Faivre-Finn C, et al. Small-cell lung cancer[J]. Nat Rev Dis Primers, 2021, 7(1): 3. DOI: 10.1038/s41572-020-00235-0.
doi: 10.1038/s41572-020-00235-0 pmid: 33446664 |
[4] |
Vafaei S, Zekiy AO, Khanamir RA, et al. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier[J]. Cancer Cell Int, 2022, 22(1): 2. DOI: 10.1186/s12935-021-02407-8.
doi: 10.1186/s12935-021-02407-8 pmid: 34980128 |
[5] |
Gadgeel SM, Pennell NA, Fidler MJ, et al. Phase Ⅱ study of maintenance pembrolizumab in patients with extensive-stage small cell lung cancer (SCLC)[J]. J Thorac Oncol, 2018, 13(9): 1393-1399. DOI: 10.1016/j.jtho.2018.05.002.
doi: 10.1016/j.jtho.2018.05.002 |
[6] |
Ricciuti B, Kravets S, Dahlberg SE, et al. Use of targeted next generation sequencing to characterize tumor mutational burden and efficacy of immune checkpoint inhibition in small cell lung cancer[J]. J Immunother Cancer, 2019, 7(1): 87. DOI: 10.1186/s40425-019-0572-6.
doi: 10.1186/s40425-019-0572-6 pmid: 30922388 |
[7] |
Keogh A, Finn S, Radonic T. Emerging biomarkers and the changing landscape of small cell lung cancer[J]. Cancers (Basel), 2022, 14(15): 3772. DOI: 10.3390/cancers14153772.
doi: 10.3390/cancers14153772 |
[8] |
Benitez JC, Recondo G, Rassy E, et al. The LIPI score and inflammatory biomarkers for selection of patients with solid tumors treated with checkpoint inhibitors[J]. Q J Nucl Med Mol Imaging, 2020, 64(2): 162-174. DOI: 10.23736/S1824-4785.20.03250-1.
doi: 10.23736/S1824-4785.20.03250-1 pmid: 32107903 |
[9] |
Lee YJ, Lee JB, Ha SJ, et al. Clinical perspectives to overcome acquired resistance to anti-programmed death-1 and anti-programmed death ligand-1 therapy in non-small cell lung cancer[J]. Mol Cells, 2021, 44(5): 363-373. DOI: 10.14348/molcells.2021.0044.
doi: 10.14348/molcells.2021.0044 pmid: 34001680 |
[10] |
Sun C, Zhang L, Zhang W, et al. Expression of PD-1 and PD-L1 on tumor-infiltrating lymphocytes predicts prognosis in patients with small-cell lung cancer[J]. Onco Targets Ther, 2020, 13: 6475-6483. DOI: 10.2147/OTT.S252031.
doi: 10.2147/OTT.S252031 |
[11] |
Acheampong E, Abed A, Morici M, et al. Tumour PD-L1 expression in small-cell lung cancer: a systematic review and meta-analysis[J]. Cells, 2020, 9(11): 2393. DOI: 10.3390/cells9112393.
doi: 10.3390/cells9112393 |
[12] |
Liu SV, Reck M, Mansfield AS, et al. Updated overall survival and PD-L1 subgroup analysis of patients with extensive-stage small-cell lung cancer treated with atezolizumab, carboplatin, and etoposide (IMpower133)[J]. J Clin Oncol, 2021, 39(6): 619-630. DOI: 10.1200/JCO.20.01055.
doi: 10.1200/JCO.20.01055 pmid: 33439693 |
[13] |
Iams WT, Porter J, Horn L. Immunotherapeutic approaches for small-cell lung cancer[J]. Nat Rev Clin Oncol, 2020, 17(5): 300-312. DOI: 10.1038/s41571-019-0316-z.
doi: 10.1038/s41571-019-0316-z pmid: 32055013 |
[14] |
Tian Y, Zhai X, Han A, et al. Potential immune escape mechanisms underlying the distinct clinical outcome of immune checkpoint blockades in small cell lung cancer[J]. J Hematol Oncol, 2019, 12(1): 67. DOI: 10.1186/s13045-019-0753-2.
doi: 10.1186/s13045-019-0753-2 |
[15] |
Otoshi T, Nagano T, Tachihara M, et al. Possible biomarkers for cancer immunotherapy[J]. Cancers (Basel), 2019, 11(7): 935. DOI: 10.3390/cancers11070935.
doi: 10.3390/cancers11070935 |
[16] |
Sha D, Jin Z, Budczies J, et al. Tumor mutational burden as a predictive biomarker in solid tumors[J]. Cancer Discov, 2020, 10(12): 1808-1825. DOI: 10.1158/2159-8290.CD-20-0522.
doi: 10.1158/2159-8290.CD-20-0522 pmid: 33139244 |
[17] |
Hellmann MD, Callahan MK, Awad MM, et al. Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer[J]. Cancer Cell, 2018, 33(5): 853-861. e4. DOI: 10.1016/j.ccell.2018.04.001.
doi: S1535-6108(18)30172-7 pmid: 29731394 |
[18] |
Kim ES, Velcheti V, Mekhail T, et al. Blood-based tumor mutational burden as a biomarker for atezolizumab in non-small cell lung cancer: the phase 2 B-F1RST trial[J]. Nat Med, 2022, 28(5): 939-945. DOI: 10.1038/s41591-022-01754-x.
doi: 10.1038/s41591-022-01754-x |
[19] |
Jardim DL, Goodman A, de Melo Gagliato D, et al. The challenges of tumor mutational burden as an immunotherapy biomarker[J]. Cancer Cell, 2021, 39(2): 154-173. DOI: 10.1016/j.ccell.2020.10.001.
doi: 10.1016/j.ccell.2020.10.001 pmid: 33125859 |
[20] |
Rudin CM, Poirier JT, Byers LA, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data[J]. Nat Rev Cancer, 2019, 19(5): 289-297. DOI: 10.1038/s41568-019-0133-9.
doi: 10.1038/s41568-019-0133-9 pmid: 30926931 |
[21] |
Prisciandaro M, Antista M, Raimondi A, et al. Biomarker landscape in neuroendocrine tumors with high-grade features: current knowledge and future perspective[J]. Front Oncol, 2022, 12: 780716. DOI: 10.3389/fonc.2022.780716.
doi: 10.3389/fonc.2022.780716 |
[22] |
Gay CM, Stewart CA, Park EM, et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities[J]. Cancer Cell, 2021, 39(3): 346-360. e7. DOI: 10.1016/j.ccell.2020.12.014.
doi: 10.1016/j.ccell.2020.12.014 pmid: 33482121 |
[23] |
金莹, 陈亚梅, 胡晓, 等. 循环肿瘤DNA检测小细胞肺癌基因突变的可行性及其预后预测价值分析[J]. 中华医学杂志, 2020, 100(45): 3614-3621. DOI:10.3760/cma.j.cn112137-20200504-01412.
doi: 10.3760/cma.j.cn112137-20200504-01412 |
[24] |
Roper N, Velez MJ, Chiappori A, et al. Notch signaling and efficacy of PD-1/PD-L1 blockade in relapsed small cell lung cancer[J]. Nat Commun, 2021, 12(1): 3880. DOI: 10.1038/s41467-021-24164-y.
doi: 10.1038/s41467-021-24164-y pmid: 34162872 |
[25] |
Hu C, Dong J, Liu L, et al. ASCL1 and DLL3 expressions and their clinicopathological implications in surgically resected pure small cell lung cancer: a study of 247 cases from the National Cancer Center of China[J]. Thorac Cancer, 2022, 13(3): 338-345. DOI: 10.1111/1759-7714.14249.
doi: 10.1111/1759-7714.14249 |
[26] |
Leonetti A, Facchinetti F, Minari R, et al. Notch pathway in small-cell lung cancer: from preclinical evidence to therapeutic challenges[J]. Cell Oncol (Dordr), 2019, 42(3): 261-273. DOI: 10.1007/s13402-019-00441-3.
doi: 10.1007/s13402-019-00441-3 |
[27] |
Tanaka K, Isse K, Fujihira T, et al. Prevalence of delta-like protein 3 expression in patients with small cell lung cancer[J]. Lung Cancer, 2018, 115: 116-120. DOI: 10.1016/j.lungcan.2017.11.018.
doi: S0169-5002(17)30585-8 pmid: 29290251 |
[28] |
Li W, Ye L, Huang Y, et al. Characteristics of notch signaling pathway and its correlation with immune microenvironment in SCLC[J]. Lung Cancer, 2022, 167: 25-33. DOI: 10.1016/j.lungcan.2022.03.019.
doi: 10.1016/j.lungcan.2022.03.019 pmid: 35381444 |
[29] |
Dixon ML, Luo L, Ghosh S, et al. Remodeling of the tumor microenvironment via disrupting Blimp1+ effector Treg activity augments response to anti-PD-1 blockade[J]. Mol Cancer, 2021, 20(1): 150. DOI: 10.1186/s12943-021-01450-3.
doi: 10.1186/s12943-021-01450-3 |
[30] |
Bonanno L, Pavan A, Dieci MV, et al. The role of immune microenvironment in small-cell lung cancer: distribution of PD-L1 expression and prognostic role of FOXP3-positive tumour infiltra-ting lymphocytes[J]. Eur J Cancer, 2018, 101: 191-200. DOI: 10.1016/j.ejca.2018.06.023.
doi: S0959-8049(18)30937-7 pmid: 30077124 |
[31] |
Jiang M, Wu C, Zhang L, et al. FOXP3-based immune risk model for recurrence prediction in small-cell lung cancer at stages Ⅰ-Ⅲ[J]. J Immunother Cancer, 2021, 9(5): e002339. DOI: 10.1136/jitc-2021-002339.
doi: 10.1136/jitc-2021-002339 |
[32] |
Kanemura H, Hayashi H, Tomida S, et al. The tumor immune microenvironment and frameshift neoantigen load determine response to PD-L1 blockade in extensive-stage SCLC[J]. JTO Clin Res Rep, 2022, 3(8): 100373. DOI: 10.1016/j.jtocrr.2022.100373.
doi: 10.1016/j.jtocrr.2022.100373 |
[33] |
Hardy-Werbin M, Rocha P, Arpi O, et al. Serum cytokine levels as predictive biomarkers of benefit from ipilimumab in small cell lung cancer[J]. Oncoimmunology, 2019, 8(6): e1593810. DOI: 10.1080/2162402X.2019.1593810.
doi: 10.1080/2162402X.2019.1593810 |
[34] |
Li L, Pi C, Yan X, et al. Prognostic value of the pretreatment lung immune prognostic index in advanced small cell lung cancer patients treated with first-line PD-1/PD-L1 inhibitors plus chemotherapy[J]. Front Oncol, 2021, 11: 697865. DOI: 10.3389/fonc.2021.697865.
doi: 10.3389/fonc.2021.697865 |
[35] |
Qi WX, Xiang Y, Zhao S, et al. Assessment of systematic inflammatory and nutritional indexes in extensive-stage small-cell lung cancer treated with first-line chemotherapy and atezolizumab[J]. Cancer Immunol Immunother, 2021, 70(11): 3199-3206. DOI: 10.1007/s00262-021-02926-3.
doi: 10.1007/s00262-021-02926-3 |
[36] |
Zhou K, Cao J, Lin H, et al. Prognostic role of the platelet to lymphocyte ratio (PLR) in the clinical outcomes of patients with advanced lung cancer receiving immunotherapy: a systematic review and meta-analysis[J]. Front Oncol, 2022, 12: 962173. DOI: 10.3389/fonc.2022.962173.
doi: 10.3389/fonc.2022.962173 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[4] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[5] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[6] | Wan Fang, Yang Gang, Li Rui, Wan Qijing. Expression levels and clinical significance of serum miR-497 and miR-383 in patients with esophageal cancer [J]. Journal of International Oncology, 2024, 51(4): 204-209. |
[7] | Yao Yixin, Shen Yulin. Predictive value of serum SOCS3 and TXNIP levels for the prognosis of patients with hepatocellular carcinoma treated with TACE [J]. Journal of International Oncology, 2024, 51(4): 217-222. |
[8] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[9] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[10] | Qian Xiaotao, Shi Ziyi, Hu Ge. A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(3): 151-156. |
[11] | Xie Shuping, Sun Yahong, Wang Chao. Prediction of efficacy of early-stage tumor markers combined with NLR and PLR for immunotherapy in gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 157-165. |
[12] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[13] | Peng Qin, Cai Yuting, Wang Wei. Advances on KPNA2 in liver cancer [J]. Journal of International Oncology, 2024, 51(3): 181-185. |
[14] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[15] | Jin Xudong, Chen Zhongjian, Mao Weimin. Research progress on the role of MTAP in malignant mesothelioma [J]. Journal of International Oncology, 2024, 51(2): 99-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||