Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (12): 752-755.doi: 10.3760/cma.j.cn371439-20200703-00114
• Reviews • Previous Articles Next Articles
Yin Jianyun1(), Wang Peiwei2, Gu Jianwei1
Received:
2020-07-03
Revised:
2020-09-04
Online:
2020-12-08
Published:
2021-01-28
Contact:
Yin Jianyun
E-mail:yinjianyun99@sina.com
Yin Jianyun, Wang Peiwei, Gu Jianwei. m6A methylation and breast cancer[J]. Journal of International Oncology, 2020, 47(12): 752-755.
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017[J]. CA Cancer J Clin, 2017,67(1):7-30. DOI: 10.3322/caac.21387.
doi: 10.3322/caac.21387 pmid: 28055103 |
[2] |
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016[J]. CA Cancer J Clin, 2016,66(4):271-289. DOI: 10.3322/caac.21349.
doi: 10.3322/caac.21349 pmid: 27253694 |
[3] |
Lan Q, Liu PY, Haase J, et al. The critical role of RNA m6A methylation in cancer[J]. Cancer Res, 2019,79(7):1285-1292. DOI: 10.1158/0008-5472.CAN-18-2965.
doi: 10.1158/0008-5472.CAN-18-2965 pmid: 30894375 |
[4] |
Liu Q, Gregory RI. RNAmod: an integrated system for the annotation of mRNA modifications[J]. Nucleic Acids Res, 2019,47(W1):W548-W555. DOI: 10.1093/nar/gkz479.
doi: 10.1093/nar/gkz479 pmid: 31147718 |
[5] |
Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein[J]. Nucleic Acids Res, 2017,45(10):6051-6063. DOI: 10.1093/nar/gkx141.
doi: 10.1093/nar/gkx141 pmid: 28334903 |
[6] |
Pan Y, Ma P, Liu Y, et al. Multiple functions of m6A RNA methylation in cancer[J]. J Hematol Oncol, 2018,11(1):48. DOI: 10.1186/s13045-018-0590-8.
doi: 10.1186/s13045-018-0590-8 pmid: 29587823 |
[7] |
Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017,169(7):1187-1200. DOI: 10.1016/j.cell.2017.05.045.
doi: 10.1016/j.cell.2017.05.045 pmid: 28622506 |
[8] |
Wang H, Xu B, Shi J. N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2[J]. Gene, 2020,722:144076. DOI: 10.1016/j.gene.2019.144076.
doi: 10.1016/j.gene.2019.144076 pmid: 31454538 |
[9] |
Cai X, Wang X, Cao C, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g[J]. Cancer Lett, 2018,415:11-19. DOI: 10.1016/j.canlet.2017.11.018.
doi: 10.1016/j.canlet.2017.11.018 pmid: 29174803 |
[10] |
Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases[J]. Mol Cell, 2016,63(2):306-317. DOI: 10.1016/j.molcel.2016.05.041.
doi: 10.1016/j.molcel.2016.05.041 pmid: 27373337 |
[11] |
Yi D, Wang R, Shi X, et al. METTL14 promotes the migration and invasion of breast cancer cells by modulating N6 methyladenosine and hsa miR 146a 5p expression[J]. Oncol Rep, 2020,43(5):1375-1386. DOI: 10.3892/or.2020.7515.
doi: 10.3892/or.2020.7515 pmid: 32323801 |
[12] |
Wu L, Wu D, Ning J, et al. Changes of N6-methyladenosine modulators promote breast cancer progression[J]. BMC Cancer, 2019,19(1):326. DOI: 10.1186/s12885-019-5538-z.
doi: 10.1186/s12885-019-5538-z pmid: 30953473 |
[13] |
Yue Y, Liu J, Cui X, et al. VIRMA mediates preferential m6A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation[J]. Cell Discov, 2018,4:10. DOI: 10.1038/s41421-018-0019-0.
doi: 10.1038/s41421-018-0019-0 pmid: 29507755 |
[14] |
Qian JY, Gao J, Sun X, et al. KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner[J]. Oncogene, 2019,38(33):6123-6141. DOI: 10.1038/s41388-019-0861-z.
doi: 10.1038/s41388-019-0861-z pmid: 31285549 |
[15] |
Deng X, Su R, Feng X, et al. Role of N6-methyladenosine modification in cancer[J]. Curr Opin Genet Dev, 2018,48:1-7. DOI: 10.1016/j.gde.2017.10.005.
doi: 10.1016/j.gde.2017.10.005 pmid: 29040886 |
[16] |
Niu Y, Lin Z, Wan A, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3[J]. Mol Cancer, 2019,18(1):46. DOI: 10.1186/s12943-019-1004-4.
doi: 10.1186/s12943-019-1004-4 pmid: 30922314 |
[17] | Xu Y, Ye S, Zhang N, et al. The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer[J]. Cancer Commun (Lond), 2020,40(10):484-500. DOI: 10.1002/cac2.12075. |
[18] |
Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast can-cer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA[J]. Proc Natl Acad Sci U S A, 2016,113(14):E2047-2056. DOI: 10.1073/pnas.1602883113.
doi: 10.1073/pnas.1602883113 pmid: 27001847 |
[19] |
Zhang C, Zhi WI, Lu H, et al. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells[J]. Oncotarget, 2016,7(40):64527-64542. DOI: 10.18632/oncotarget.11743.
doi: 10.18632/oncotarget.11743 pmid: 27590511 |
[20] |
Meyer KD, Jaffrey SR. Rethinking m6A readers, writers, and erasers[J]. Annu Rev Cell Dev Biol, 2017: 33:319-342. DOI: 10.1146/annurev-cellbio-100616-060758.
doi: 10.1146/annurev-cellbio-100616-060758 pmid: 28759256 |
[21] |
Patil DP, Pickering BF, Jaffrey SR. Reading m6A in the transcriptome: m6A-binding proteins[J]. Trends Cell Biol, 2018,28(2):113-127. DOI: 10.1016/j.tcb.2017.10.001.
doi: 10.1016/j.tcb.2017.10.001 pmid: 29103884 |
[22] |
Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015,161(6):1388-1399. DOI: 10.1016/j.cell.2015.05.014.
doi: 10.1016/j.cell.2015.05.014 pmid: 26046440 |
[23] |
Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J]. Cell Res, 2017,27(3):315-328. DOI: 10.1038/cr.2017.15.
doi: 10.1038/cr.2017.15 pmid: 28106072 |
[24] | Xiao W, Adhikari S, Dahal U, et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing[J]. Mol Cell, 2016, 61(4): 507-519. DIO: 10.1016/j.molcel. 2016. 01. 012. |
[25] |
Hsu PJ, Zhu Y, Ma H, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017,27(9):1115-1127. DOI: 10.1038/cr.2017.99.
doi: 10.1038/cr.2017.99 pmid: 28809393 |
[26] |
Meyer KD, Patil DP, Zhou J, et al. 5'UTR m6A promotes cap-independent translation[J]. Cell, 2015,163(4):999-1010. DOI: 10.1016/j.cell.2015.10.012.
doi: 10.1016/j.cell.2015.10.012 pmid: 26593424 |
[27] |
Liu L, Liu X, Dong Z, et al. N6-methyladenosine-related genomic targets are altered in breast cancer tissue and associated with poor survival[J]. J Cancer, 2019,10(22):5447-5459. DOI: 10.7150/jca.35053.
doi: 10.7150/jca.35053 pmid: 31632489 |
[28] |
Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events[J]. Cell, 2015,162(6):1299-1308. DOI: 10.1016/j.cell.2015.08.011.
doi: 10.1016/j.cell.2015.08.011 pmid: 26321680 |
[29] |
Liu N, Dai Q, Zheng G, et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015,518(7540):560-564. DOI: 10.1038/nature14234.
doi: 10.1038/nature14234 pmid: 25719671 |
[30] |
Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein[J]. Nucleic Acids Res, 2017,45(10):6051-6063. DOI: 10.1093/nar/gkx141.
doi: 10.1093/nar/gkx141 pmid: 28334903 |
[31] |
Klinge CM, Piell KM, Tooley CS. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells[J]. Sci Rep, 2019,9(1):9430. DOI: 10.1038/s41598-019-45636-8.
doi: 10.1038/s41598-019-45636-8 pmid: 31263129 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[3] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[4] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[5] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[6] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. |
[7] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. |
[8] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[9] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[10] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. |
[11] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[12] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[13] | Zhou Ting, Xu Shaohua, Mei Lin. Efficacy and safety of bevacizumab combined with capecitabine in the treatment of advanced breast cancer [J]. Journal of International Oncology, 2023, 50(3): 144-149. |
[14] | Li Lixi, Zhang Di, Luo Yang, Ma Fei. Clinical application of PARP inhibitors in breast cancer [J]. Journal of International Oncology, 2023, 50(2): 91-96. |
[15] | Geng Rui, Ma Junqiang, Guo Qiang, Niu Zhaofeng. Tendency of elderly patients with breast cancer to choose comprehensive treatment mode and its influencing factors [J]. Journal of International Oncology, 2023, 50(11): 650-654. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||