[1] Rockall AG, Avril N, Lam R, et al. Repeatability of quantitative FDGPET/CT and contrastenhanced CT in recurrent ovarian carcinoma: testretest measurements for tumor FDG uptake, diameter, and volume[J]. Clin Cancer Res, 2014, 20(10): 2751-2760. DOI: 10.1158/10780432.CCR132634.
[2] Geraghty KM, Chen S, Harthill JE, et al. Regulation of multisite phosphorylation and 1433 binding of AS160 in response to IGF1, EGF, PMA and AICAR[J]. Biochem J, 2007, 407(2): 231-241. DOI: 10.1042/BJ20070649.
[3] Jiang XH, Sun JW, Xu M, et al. Frequent hyperphosphorylation of AS160 in breast cancer[J]. Cancer Biol Ther, 2010, 10(4): 362-367.
[4] Upadhyay M, Samal J, Kandpal M, et al. The warburg effect: insights from the past decade[J]. Pharmacol Ther, 2013, 137(3): 318-330. DOI: 10.1016/j.pharmthera.2012.11.003.
[5] Nakano I. Therapeutic potential of targeting glucose metabolism in glioma stem cells[J]. Expert Opin Ther Targets, 2014, 18(11): 1233-1236. DOI: 10.1517/14728222.2014.944899.
[6] Reiss K, Del Valle L, Lassak A, et al. Nuclear IRS1 and cancer[J]. J Cell Physiol, 2012, 227(8): 2992-3000. DOI: 10.1002/jcp.24019.
[7] Aleskandarany MA, Rakha EA, Ahmed MA, et al. Clinicopathologic and molecular significance of phosphoAkt expression in early invasive breast cancer[J]. Breast Cancer Res Treat, 2011, 127(2): 407-416. DOI: 10.1007/s105490101012y.
[8] Yang S, Ji M, Zhang L, et al. Phosphorylation of KIBRA by the extracellular signalregulated kinase (ERK)ribosomal S6 kinase (RSK) cascade modulates cell proliferation and migration[J]. Cell Signal, 2014, 26(2): 343-351. DOI: 10.1016/j.cellsig.2013.11.012.
[9] Sommer EM, Dry H, Cross D, et al. Elevated SGK1 predicts resistance of breast cancer cells to Akt inhibitors[J]. Biochem J, 2013, 452(3): 499-508. DOI: 10.1042/BJ20130342.
[10] Szablewski L. Expression of glucose transporters in cancers[J]. Biochim Biophys Acta, 2013, 1835(2): 164-169. DOI: 10.1016/j.bbcan.2012.12.004.
[11] Shibata K, Kajiyama H, Mizokami Y, et al. Placental leucine aminopeptidase (PLAP) and glucose transporter 4 (GLUT4) expression in benign, borderline, and malignant ovarian epithelia[J]. Gynecol Oncol, 2005, 98(1): 11-18. DOI: 10.1016/j.ygyno.2005.03.043.
[12] Cheng JC, Mcbrayer SK, Coarfa C, et al. Expression and phosphorylation of the AS160_v2 splice variant supports GLUT4 activation and the Warburg effect in multiple myeloma[J]. Cancer Metab, 2013, 1(1): 14. DOI: 10.1186/20493002114.
[13] Soussan M, Orlhac F, Boubaya M, et al. Relationship between tumor heterogeneity measured on FDGPET/CT and pathological prognostic factors in invasive breast cancer[J]. PLoS One, 2014, 9(4): e94017. DOI: 10.1371/journal.pone.0094017.
[14] Gongpan P, Lu Y, Wang F, et al. AS160 controls eukaryotic cell cycle and proliferation by regulating the CDK inhibitor p21[J]. Cell Cycle, 2016, 15(13): 1733-1741. DOI: 10.1080/15384101.2016.1183853.
[15] Mcbrayer SK, Cheng JC, Singhal S, et al. Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: implications for glucose transporterdirected therapy[J]. Blood, 2012, 119(20): 4686-4697. DOI: 10.1182/blood201109377846.
[16] Zhang D, Li J, Wang F, et al. 2DeoxyDglucose targeting of glucose metabolism in cancer cells as a potential therapy[J]. Cancer Lett, 2014, 355(2): 176-183. DOI: 10.1016/j.canlet.2014.09.003. |