[1] Nones K, Waddell N, Song S, et al. Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and Met signaling[J]. Int J Cancer, 2014, 135(5): 1110-1118. DOI: 10.1002/ijc.28765.
[2] Pothula SP, Xu ZH, Goldstein D, et al. Hepatocyte growth factor inhibition: a novel therapeutic approach in pancreatic cancer[J]. Br J Cancer, 2016, 114(3): 269-280. DOI: 10.1038/bjc.2015.478.
[3] Delitto D, Vertes-George E, Hughes SJ, et al. c-Met signaling in the development of tumorigenesis and chemoresistance: potential applications in pancreatic cancer[J]. World J Gastroenterol, 2014, 20(26): 8458-8470. DOI: 10.3748/wjg.v20.i26.8458.
[4] Huang C, Qiu ZJ, Wang LW, et al. A novel FoxM1-Caveolin signaling pathway promotes pancreatic cancer invasion and metastasis[J]. Cancer Res, 2012, 72(3): 655-665. DOI: 10.1158/0008-5472.CAN-11-3102.
[5] Bao B, Wang Z, Ali S, et al. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells[J]. J Cell Biochem, 2011, 112(9): 2296-2306. DOI: 10.1002/jcb.23150.
[6] Cui J, Xia T, Xie D, et al. HGF/c-Met and FOXM1 form a positive feedback loop and render pancreatic cancer cells resistance to Met inhibition and aggressive phenotypes[J]. Oncogene, 2016, 35(36): 4708-4718. DOI: 10.1038/onc.2016.14.
[7] Yu H, Lee H, Herrmann A, et al. Revisiting STAT3 signalling in cancer: new and unexpected biological functions[J]. Nat Rev Cancer, 2014, 14(11): 736-746. DOI: 10.1038/nrc3818.
[8] Patel MB, Pothula SP, Xu Z, et al. The role of the hepatocyte growth factor/c-MET pathway in pancreatic stellate cell-endothelial cell interactions: antiangiogenic implications in pancreatic cancer[J]. Carcinogenesis, 2014, 35(8): 1891-1900. DOI: 10.1093/carcin/bgu122.
[9] Gherardi E, Birchmeier W, Birchmeier C, et al. Targeting Met in cancer: rationale and progress[J]. Nat Rev Cancer, 2012, 12(2): 89-103. DOI: 10.1038/nrc3205.
[10] Garajova I, Giovannetti E, Biasco G, et al. c-Met as a target for personalized therapy[J]. Transl Oncogenomics, 2015, 7(Suppl 1): 13-31. DOI: 10.4137/TOG.S30534.
[11] Chen HM, Tsai CH, Hung WC. Foretinib inhibits angiogenesis, lymphangiogenesis and tumor growth of pancreatic cancer in vivo by decreasing VEGFR-2/3 and TIE-2 signaling[J]. Oncotarget, 2015, 6(17): 14940-14952. DOI: 10.18632/oncotarget.3613.
[12] Grullich C. Cabozantinib: a Met, RET, and VEGFR2 tyrosine kinase inhibitor[J]. Recent Results Cancer Res, 2014, 201: 207-214. DOI: 10.1007/978-3-642-54490-3_12.
[13] Hage C, Rausch V, Giese N, et al. The novel c-Met inhibitor cabozantinib overcomes gemcitabine resistance and stem cell signaling in pancreatic cancer[J]. Cell Death Dis, 2013, 4(5): e627-e627. DOI: 10.1038/cddis.2013.158.
[14] Zhen DB, Griffith KA, Ruch JM, et al. A phase Ⅰ trial of cabozantinib and gemcitabine in advanced pancreatic cancer[J]. Invest New Drugs, 2016, 34(6): 733-739. DOI: 10.1007/s10637-016-0376-1.
[15] You WK, Sennino B, Williamson CW, et al. VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer[J]. Cancer Res, 2011, 71(14): 4758-4768. DOI: 10.1158/0008-5472.CAN-10-2527.
[16] Liu XD, Wang Q, Yang GJ, et al. A novel kinase inhibitor, INCB28060, blocks c-MET-Dependent signaling, neoplastic activities, and Cross-Talk with EGFR and HER3[J]. Clin Cancer Res, 2011, 17(22): 7127-7138. DOI: 10.1158/1078-0432.CCR-11-1157.
[17] Brandes F, Schmidt K, Wagner C, et al. Targeting cMET with INC280 impairs tumour growth and improves efficacy of gemcitabine in a pancreatic cancer model[J]. BMC Cancer, 2015, 15: 71. DOI: 10.1186/s12885-015-1064-9. |