| [1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
| [2] |
Avci T, Erkent M, Turnaolu H, et al. Are we on the side of over-diagnosis and treatment in BI-RADS 4A breast lesions?[J]. Ann Saudi Med, 2021, 28(3): 501-506. DOI: 10.5455/annalsmedres.2020.02.136.
|
| [3] |
Irmici G, Cozzi A, Depretto C, et al. Impact of an artificial intelligence decision support system among radiologists with different levels of experience in breast ultrasound: a prospective study in a tertiary center[J]. Eur J Radiol, 2025, 185: 112012. DOI: 10.1016/j.ejrad.2025.112012.
|
| [4] |
Zhou W, Luo H, Zhao H, et al. Unexpected breast cancer mimicking benign lesions on ultrasound-guided vacuum-assisted excision biopsy: a retrospective cross-sectional study over a 20-year period[J]. Front Oncol, 2023, 13: 1108689. DOI: 10.3389/fonc.2023.1108689.
|
| [5] |
Zhang X, Li H, Wang C, et al. Evaluating the accuracy of breast cancer and molecular subtype diagnosis by ultrasound image deep learning model[J]. Front Oncol, 2021, 11: 623506. DOI: 10.3389/fonc.2021.623506.
|
| [6] |
Zuopeng D, Weiyong L, Chunmei H, et al. Qualitative diagnosis of solid breast mass by blood flow in solid breast mass based on color doppler ultrasound[J]. J Med Imaging Health Inform, 2021, 11(6): 1608-1615. DOI: 10.1166/jmihi.2021.3682.
|
| [7] |
Gou F, Liu J, Xiao C, et al. Research on artificial-intelligence-assisted medicine: a survey on medical artificial intelligence[J]. Diagnostics (Basel), 2024, 14(14): 1472. DOI: 10.3390/diagnostics14141472.
|
| [8] |
Huang X, Cao J, Zu X. Tumor-associated macrophages: an important player in breast cancer progression[J]. Thorac Cancer, 2022, 13(3): 269-276. DOI: 10.1111/1759-7714.14268.
|
| [9] |
Luo H, Li J, Shi Y, et al. Stiffness in breast masses with posterior acoustic shadowing: significance of ultrasound real time shear wave elastography[J]. BMC Med Imaging, 2022, 22(1): 71. DOI: 10.1186/s12880-022-00797-3.
pmid: 35430798
|
| [10] |
Kim S, Tran TXM, Song H, et al. Microcalcifications, mammographic breast density, and risk of breast cancer: a cohort study[J]. Breast Cancer Res, 2022, 24(1): 96. DOI: 10.1186/s13058-022-01594-0.
pmid: 36544167
|
| [11] |
何琴, 陈国珍, 武丽, 等. 乳腺肿块超声特征在乳腺癌筛查中的预测价值分析[J]. 中国妇幼卫生杂志, 2024, 15(6): 73-80. DOI: 10.19757/j.cnki.issn1674-7763.2024.06.011.
|
| [12] |
杨海芳, 薛姣姣, 王鹏, 等. 彩色多普勒超声成像结合乳腺钼靶、EGF/EGFR、MIC-1对乳腺浸润性导管癌的评估价值[J]. 现代生物医学进展, 2024, 24(21): 4140-4143. DOI: 10.13241/j.cnki.pmb.2024.21.027.
|
| [13] |
席芬, 张培培, 孝梦甦, 等. 乳腺错构瘤的临床与超声影像学特征分析[J]. 中华医学超声杂志(电子版), 2024, 21(5): 505-510. DOI: 10.3877/cma.j.issn.1672-6448.2024.05.009.
|
| [14] |
Sha R, Kong XM, Li XY, et al. Global burden of breast cancer and attributable risk factors in 204 countries and territories, from 1990 to 2021: results from the Global Burden of Disease Study 2021[J]. Biomark Res, 2024, 12(1): 87. DOI: 10.1186/s40364-024-00631-8.
pmid: 39183342
|