Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (3): 186-189.doi: 10.3760/cma.j.cn371439-20241224-00029
• Review • Previous Articles Next Articles
Pu Wenxia1, Deng Zongzhuo1, Wang Peixin2, Wang Qiulan1()
Received:
2024-12-24
Revised:
2025-01-29
Online:
2025-03-08
Published:
2025-04-02
Contact:
Wang Qiulan,Email:Supported by:
Pu Wenxia, Deng Zongzhuo, Wang Peixin, Wang Qiulan. Research progress of the correlation between angiogenesis and osteosarcoma[J]. Journal of International Oncology, 2025, 52(3): 186-189.
[1] |
Beird HC, Bielack SS, Flanagan AM, et al. Osteosarcoma[J]. Nat Rev Dis Primers, 2022, 8(1): 77. DOI: 10.1038/s41572-022-00409-y.
pmid: 36481668 |
[2] |
Xu N, Kang Y, Wang W, et al. The prognostic role of CD133 expression in patients with osteosarcoma[J]. Clin Exp Med, 2020, 20(2): 261-267. DOI: 10.1007/s10238-020-00607-6.
pmid: 32048073 |
[3] | 王培鑫, 赵军, 徐世红, 等. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. DOI: 10.3760/cma.j.cn371439-20240304-00052. |
[4] | Odri GA, Tchicaya-Bouanga J, Yoon DJY, et al. Metastatic progression of osteosarcomas: a review of current knowledge of environmental versus oncogenic drivers[J]. Cancers (Basel), 2022, 14(2): 360. DOI: 10.3390/cancers14020360. |
[5] |
Sadykova LR, Ntekim AI, Muyangwa-Semenova M, et al. Epidemiology and risk factors of osteosarcoma[J]. Cancer Invest, 2020, 38(5): 259-269. DOI: 10.1080/07357907.2020.1768401.
pmid: 32400205 |
[6] |
Al-Abboodi M, An R, Weber M, et al. Tumor-type-dependent effects on the angiogenic abilities of endothelial cells in an in vitro rat cell model[J]. Oncol Rep, 2019, 42(1): 350-360. DOI: 10.3892/or.2019.7143.
pmid: 31059104 |
[7] | Puxeddu I, Pratesi F, Ribatti D, et al. Mediators of inflammation and angiogenesis in chronic spontaneous urticaria: are they potential biomarkers of the disease?[J]. Mediators Inflamm, 2017, 2017: 4123694. DOI: 10.1155/2017/4123694. |
[8] | Ma J, Huang H, Han Z, et al. RLN2 is a positive regulator of AKT-2-induced gene expression required for osteosarcoma cells invasion and chemoresistance[J]. Biomed Res Int, 2015, 2015: 147468. DOI: 10.1155/2015/147468. |
[9] | Fernandez-Cortes M, Delgado-Bellido D, Oliver FJ. Vasculogenic mimicry: become an endothelial cell "but not so much"[J]. Front Oncol, 2019, 9: 803. DOI: 10.3389/fonc.2019.00803. |
[10] | Ren HY, Shen JX, Mao XM, et al. Correlation between tumor vasculogenic mimicry and poor prognosis of human digestive cancer patients: a systematic review and meta-analysis[J]. Pathol Oncol Res, 2019, 25(3): 849-858. DOI: 10.1007/s12253-018-0496-3. |
[11] |
Yao N, Ren K, Gu XJ, et al. Identification of potential crucial genes associated with vasculogenic mimicry in human osteosarcoma based on gene expression profile[J]. Neoplasma, 2020, 67(2): 286-295. DOI: 10.4149/neo_2019_190414N329.
pmid: 31884799 |
[12] | 任可, 姚楠, 吴苏稼, 等. 基于血管生成拟态相关分子MIG-7的四肢骨肉瘤预后分析及风险预测模型构建[J]. 肿瘤防治研究, 2021, 48(1): 31-37. DOI: 10.3971/j.issn.1000-8578.2021.20.0521. |
[13] |
Ren K, Zhang J, Gu X, et al. Migration-inducing gene-7 independently predicts poor prognosis of human osteosarcoma and is associated with vasculogenic mimicry[J]. Exp Cell Res, 2018, 369(1): 80-89. DOI: 10.1016/j.yexcr.2018.05.008.
pmid: 29750896 |
[14] | Yao N, Zhou J, Song J, et al. miR-520d-3p/MIG-7 axis regulates vasculogenic mimicry formation and metastasis in osteosarcoma[J]. Neoplasma, 2022, 69(4): 764-775. DOI: 10.4149/neo_2022_211128N1683. |
[15] | Gao Z, Zhao GS, Lv Y, et al. Anoikis-resistant human osteosarcoma cells display significant angiogenesis by activating the Src kinase- mediated MAPK pathway[J]. Oncol Rep, 2019, 41(1): 235-245. DOI: 10.3892/or.2018.6827. |
[16] |
Zeng C, Wen M, Liu X. Fibroblast activation protein in osteosarcoma cells promotes angiogenesis via AKT and ERK signaling pathways[J]. Oncol Lett, 2018, 15(4): 6029-6035. DOI: 10.3892/ol.2018.8027.
pmid: 29552230 |
[17] |
Yang M, Zhang H, Gao S, et al. DEPDC1 and KIF4A synergistically inhibit the malignant biological behavior of osteosarcoma cells through hippo signaling pathway[J]. J Orthop Surg Res, 2023, 18(1): 145. DOI: 10.1186/s13018-023-03572-4.
pmid: 36849972 |
[18] |
Raimondi L, De Luca A, Gallo A, et al. Osteosarcoma cell-derived exosomes affect tumor microenvironment by specific packaging of microRNAs[J]. Carcinogenesis, 2020, 41(5): 666-677. DOI: 10.1093/carcin/bgz130.
pmid: 31294446 |
[19] |
Lv J, Yuan J, Xu CJ, et al. VEGF-C/VEGFR-3/iNOS signaling in osteosarcoma MG63 cells mediates stimulatory effects on human umbilical vein endothelial cell proliferation[J]. Chin Med Sci J, 2021, 36(1): 35-42. DOI: 10.24920/003753.
pmid: 33853707 |
[20] |
Zhang P, Zhang J, Quan H, et al. MicroRNA-143 expression inhibits the growth and the invasion of osteosarcoma[J]. J Orthop Surg Res, 2022, 17(1): 236. DOI: 10.1186/s13018-022-03127-z.
pmid: 35418302 |
[21] |
Zhang L, Lv Z, Xu J, et al. MicroRNA-134 inhibits osteosarcoma angiogenesis and proliferation by targeting the VEGFA/VEGFR1 pathway[J]. FEBS J, 2018, 285(7): 1359-1371. DOI: 10.1111/febs.14416.
pmid: 29474747 |
[22] |
Xie L, Li W, Li Y. Mir-744-5p inhibits cell growth and angiogenesis in osteosarcoma by targeting NFIX[J]. J Orthop Surg Res, 2024, 19(1): 485. DOI: 10.1186/s13018-024-04947-x.
pmid: 39152460 |
[23] |
Kumanishi S, Yamanegi K, Nishiura H, et al. Epigenetic modulators hydralazine and sodium valproate act synergistically in VEGI-mediated anti-angiogenesis and VEGF interference in human osteosarcoma and vascular endothelial cells[J]. Int J Oncol, 2019, 55(1): 167-178. DOI: 10.3892/ijo.2019.4811.
pmid: 31180533 |
[24] |
Li W, Liu J, Cai T, et al. TCF12 transcriptionally activates SPHK1 to induce osteosarcoma angiogenesis by promoting the S1P/S1PR4/STAT3 axis[J]. Mol Cell Biol, 2024, 44(5): 178-193. DOI: 10.1080/10985549.2024.2341781.
pmid: 38767243 |
[25] |
Ling J, Sun Y, Pan J, et al. Feedback modulation of endothelial cells promotes epithelial-mesenchymal transition and metastasis of osteosarcoma cells by von willebrand factor release[J]. J Cell Biochem, 2019, 120(9): 15971-15979. DOI: 10.1002/jcb.28875.
pmid: 31099074 |
[26] |
Yang J, Hu Y, Wang L, et al. Human umbilical vein endothelial cells derived-exosomes promote osteosarcoma cell stemness by activating notch signaling pathway[J]. Bioengineered, 2021, 12(2): 11007-11017. DOI: 10.1080/21655979.2021.2005220.
pmid: 34781817 |
[27] | Ghalehbandi S, Yuzugulen J, Pranjol MZI, et al. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF[J]. Eur J Pharmacol, 2023, 949: 175586. DOI: 10.1016/j.ejphar.2023.175586. |
[28] |
Martin JD, Cabral H, Stylianopoulos T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges[J]. Nat Rev Clin Oncol, 2020, 17(4): 251-266. DOI: 10.1038/s41571-019-0308-z.
pmid: 32034288 |
[29] | Hayashi T, Yamamoto N, Kurosawa G, et al. A novel high-throughput screening method for a human multicentric osteosarcoma-specific antibody and biomarker using a phage display-derived monoclonal antibody[J]. Cancers (Basel), 2022, 14(23): 5829. DOI: 10.3390/cancers14235829. |
[30] | Zhao ZX, Li X, Liu WD, et al. Inhibition of growth and metastasis of tumor in nude mice after intraperitoneal injection of bevacizumab[J]. Orthop Surg, 2016, 8(2): 234-240. DOI: 10.1111/os.12236. |
[31] | Kuo C, Kent PM, Logan AD, et al. Docetaxel, bevacizumab, and gemcitabine for very high risk sarcomas in adolescents and young adults: a single-center experience[J]. Pediatr Blood Cancer, 2017, 64(4): 28221727. DOI: 10.1002/pbc.26265. |
[32] | Assi A, Farhat M, Hachem MCR, et al. Tyrosine kinase inhibitors in osteosarcoma: adapting treatment strategiesa[J]. J Bone Oncol, 2023, 43: 100511. DOI: 10.1016/j.jbo.2023.100511. |
[33] | Wang BD, Yu XJ, Hou JC, et al. Bevacizumab attenuates osteosarcoma angiogenesis by suppressing MIAT encapsulated by serum-derived extracellular vesicles and facilitating miR-613-mediated GPR158 inhibition[J]. Cell Death Dis, 2022, 13(3): 272. DOI: 10.1038/s41419-022-04620-3. |
[34] | Buttell A, Qiu W. The action and resistance mechanisms of lenvatinib in liver cancer[J]. Mol Carcinog, 2023, 62(12): 1918-1934. DOI: 10.1002/mc.23625. |
[35] |
Guo J, Zhao J, Xu Q, et al. Resistance of lenvatinib in hepatocellular carcinoma[J]. Curr Cancer Drug Targets, 2022, 22(11): 865-878. DOI: 10.2174/1568009622666220428111327.
pmid: 36267045 |
[36] | Casanova M, Bautista F, Campbell-Hewson Q, et al. Regorafenib plus vincristine and irinotecan in pediatric patients with recurrent/refractory solid tumors: an innovative therapy for children with cancer study[J]. Clin Cancer Res, 2023, 29(21): 4341-4351. DOI: 10.1158/1078-0432.CCR-23-0257. |
[37] | Liu Y, Jiang B, Li Y, et al. Effect of traditional Chinese medicine in osteosarcoma: cross-interference of signaling pathways and potential therapeutic targets[J]. Medicine (Baltimore), 2024, 103(3): e36467. DOI: 10.1097/MD.0000000000036467. |
[38] | Li X, Lu Q, Xie W, et al. Anti-tumor effects of triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/β-catenin signaling[J]. Biochem Biophys Res Commun, 2018, 496(2): 443-449. DOI: 10.1016/j.bbrc.2018.01.052. |
[39] |
Rabelo AC, Borghesi J, Carreira ACO, et al. Calotropis procera (aiton) dryand (Apocynaceae) as an anti-cancer agent against canine mammary tumor and osteosarcoma cells[J]. Res Vet Sci, 2021, 138: 79-89. DOI: 10.1016/j.rvsc.2021.06.005.
pmid: 34119813 |
[40] |
Yao N, Zhou J, Jiang Y, et al. Rhizoma paridis saponins suppresses vasculogenic mimicry formation and metastasis in osteosarcoma through regulating miR-520d-3p/MIG-7 axis[J]. J Pharmacol Sci, 2022, 150(3): 180-190. DOI: 10.1016/j.jphs.2022.08.005.
pmid: 36184123 |
[41] | Zhou J, Wang L, Peng C, et al. Co-targeting tumor angiogenesis and immunosuppressive tumor microenvironment: a perspective in ethnopharmacology[J]. Front Pharmacol, 2022, 13: 886198. DOI: 10.3389/fphar.2022.886198. |
[42] |
Xiao Y, Yu TJ, Xu Y, et al. Emerging therapies in cancer metabolism[J]. Cell Metab, 2023, 35(8): 1283-1303. DOI: 10.1016/j.cmet.2023.07.006.
pmid: 37557070 |
[43] | Zhu D, Li Y, Zhang Z, et al. Recent advances of nanotechnology-based tumor vessel-targeting strategies[J]. J Nanobiotechnology, 2021, 19(1): 435. DOI: 10.1186/s12951-021-01190-y. |
[1] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[2] | Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao. Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma [J]. Journal of International Oncology, 2024, 51(4): 239-244. |
[3] | Jiang Xi, Wu Yongcun, Liang Yan, Chu Li, Duan Yingxin, Wang Lijun, Huo Junjie. Impact of pembrolizumab combined with chemotherapy on angiogenesis and circulating endothelial cells in patients with advanced non-small cell lung cancer [J]. Journal of International Oncology, 2024, 51(2): 89-94. |
[4] | Ma Xiaoping, Chang Junli, Sun Xingyuan, Yang Yanping. Study progression on mechanism of long non-coding RNAs regulating drug resistance in osteosarcoma [J]. Journal of International Oncology, 2023, 50(1): 51-54. |
[5] | Zhou Renbang, Zhang Zhongchuan, Xu Zhiyuan, Zhu Xunbing. MiR-219a-5p inhibits the proliferation, invasion and migration of osteosarcoma U2OS cells by negatively regulating HMGA2 [J]. Journal of International Oncology, 2022, 49(4): 193-198. |
[6] | Li Bingliang, Yang Ya, Huang Yingli, Si Wen, Li Xingwei, Zhang Yuanmin, Bian Jichao, Chen Yu. Effects of miR-20a-5p targeting KDM6B on the proliferation, migration and invasion of osteosarcoma cells [J]. Journal of International Oncology, 2021, 48(2): 65-73. |
[7] | Yang Xiao1, Li Si2, Peng Jin3, Wang Lin4, Wu Yilun4, Feng Ying2. Effect of plasma membrane-associated sialidase NEU3 activity on the proliferation and apoptosis of osteosarcoma MG-63 cells [J]. Journal of International Oncology, 2019, 46(4): 193-198. |
[8] | He Qihua. Effect and mechanism of microRNA24 on cell proliferation and migration of osteosarcoma cell line U2OS [J]. Journal of International Oncology, 2017, 44(7): 490-495. |
[9] | YUAN Yuan, LI Song-Lin, WANG Zhong-Hua, SHEN Hui-Hua, LI Wu, WANG Wei-Dong. Evodiamine inhibits apoptosis of human osteosarcoma MG-63 cells by blocking Wnt/β-catenin signaling [J]. Journal of International Oncology, 2017, 44(2): 86-90. |
[10] | Wang Wei, Li Zhaohui, Zheng Xiaoxia, Cui Yuying. Expression of ErbB3 in osteosarcoma cell lines Saos-2 and its significance [J]. Journal of International Oncology, 2016, 43(8): 593-596. |
[11] | WU Jin, CHEN Zhi-Da, ZENG Wen-Rong, LIN Bin, WU Xin-Yu, LIU Qing-Jun. HERG suppresses the malignant phenotypes of osteosarcoma via modulating NF-κB pathway [J]. Journal of International Oncology, 2016, 43(7): 508-514. |
[12] | Shen Guoqi, Zhang Chunlin. Receptor tyrosine kinases in osteosarcoma and Ewing sarcoma [J]. Journal of International Oncology, 2015, 42(7): 551-553. |
[13] | Zhang Ning, You Jianyu, Guo Weina, Zhao Baolin. Status analysis of gene therapy in osteosarcoma [J]. Journal of International Oncology, 2015, 42(1): 74-76. |
[14] | Ren Huiwen, Yang Cheng, Su Hongwei, Li Hongwei. Predictive effect of microRNA ratio in osteosarcoma [J]. Journal of International Oncology, 2014, 41(8): 708-711. |
[15] | YANG Cheng, SU Hong-Wei, REN Hui-Wen, LI Hong-Wei. The occurrence,development and metastasis in bone neoplasms [J]. Journal of International Oncology, 2014, 41(7): 533-536. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||