Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (8): 515-519.doi: 10.3760/cma.j.cn371439-20240304-00086
• Reviews • Previous Articles Next Articles
Received:
2024-03-04
Revised:
2024-05-02
Online:
2024-08-08
Published:
2024-09-24
Contact:
Lu Haijun,Email:lhj82920608@163.com
Meng Kexin, Lu Haijun. Oral microbiota:a biomarker for the diagnosis and prognosis of oral squamous cell carcinoma[J]. Journal of International Oncology, 2024, 51(8): 515-519.
[1] | Smędra A, Berent J. The influence of the oral microbiome on oral cancer: a literature review and a new approach[J]. Biomolecules, 2023, 13(5): 815. DOI: 10.3390/biom13050815. |
[2] | Li RH, Xiao L, Gong T, et al. Role of oral microbiome in oral oncogenesis, tumor progression, and metastasis[J]. Mol Oral Microbiol, 2023, 38(1): 9-22. DOI: 10.1111/omi.12403. |
[3] |
Harrandah AM. The role of fusobacteria in oral cancer and immune evasion[J]. Curr Opin Oncol, 2023, 35(2): 125-131. DOI: 10.1097/cco.0000000000000927.
pmid: 36633319 |
[4] | Pignatelli P, Romei FM, Bondi D, et al. Microbiota and oral cancer as a complex and dynamic microenvironment: a narrative review from etiology to prognosis[J]. Int J Mol Sci, 2022, 23(15): 8323. DOI: 10.3390/ijms23158323. |
[5] | Li CX, Liu H, Gong ZC. What is the potential interplay between microbiome and tumor microenvironment in oral squamous cell carcinomas?[J]. Asian Pac J Cancer Prev, 2022, 23(7): 2199-2213. DOI: 10.31557/apjcp.2022.23.7.2199. |
[6] | Stasiewicz M, Karpiński TM. The oral microbiota and its role in carcinogenesis[J]. Semin Cancer Biol, 2022, 86(Pt 3): 633-642. DOI: 10.1016/j.semcancer.2021.11.002. |
[7] |
Theofilou VI, Alfaifi A, Montelongo-Jauregui D, et al. The oral mycobiome: oral epithelial dysplasia and oral squamous cell carcinoma[J]. J Oral Pathol Med, 2022, 51(5): 413-420. DOI: 10.1111/jop.13295.
pmid: 35347760 |
[8] | Su Mun L, Wye Lum S, Kong Yuiin Sze G, et al. Association of microbiome with oral squamous cell carcinoma: a systematic review of the metagenomic studies[J]. Int J Environ Res Public Health, 2021, 18(14): 7224. DOI: 10.3390/ijerph18147224. |
[9] | Li Z, Liu Y, Zhang L. Role of the microbiome in oral cancer occurrence, progression and therapy[J]. Microb Pathog, 2022, 169: 105638. DOI: 10.1016/j.micpath.2022.105638. |
[10] | Zhou XX, Hao Y, Peng X, et al. The clinical potential of oral microbiota as a screening tool for oral squamous cell carcinomas[J]. Front Cell Infect Microbiol, 2021, 11: 728933. DOI: 10.3389/fcimb.2021.728933. |
[11] |
Takahashi YSH, Park J, Hosomi K, et al. Analysis of oral microbiota in Japanese oral cancer patients using 16S rRNA sequencing[J]. J Oral Biosci, 2019, 61(2): 120-128. DOI: 10.1016/j.job.2019.03.003.
pmid: 31109865 |
[12] | Anjali K, Manzoor M, Suryavanshi MV, et al. Dysbiosis of the oral microbiota composition is associated with oral squamous cell carcinoma and the impact of radiotherapy: a pilot study[J]. FEMS Microbiol Lett, 2023, 370: fnad111. DOI: 10.1093/femsle/fnad111. |
[13] | Wright RJ, Pewarchuk ME, Marshall EA, et al. Exploring the microbiome of oral epithelial dysplasia as a predictor of malignant progression[J]. BMC Oral Health, 2023, 23(1): 206. DOI: 10.1186/s12903-023-02911-5. |
[14] |
Chen MY, Chen JW, Wu LW, et al. Carcinogenesis of male oral submucous fibrosis alters salivary microbiomes[J]. J Dent Res, 2021, 100(4): 397-405. DOI: 10.1177/0022034520968750.
pmid: 33089709 |
[15] | Li ZX, Chen G, Wang PP, et al. Alterations of the oral microbiota profiles in Chinese patient with oral cancer[J]. Front Cell Infect Microbiol, 2021, 11: 780067. DOI: 10.3389/fcimb.2021.780067. |
[16] | Zeng B, Tan J, Guo GA, et al. The oral cancer microbiome contains tumor space-specific and clinicopathology-specific bacteria[J]. Front Cell Infect Microbiol, 2022, 12: 942328. DOI: 10.3389/fcimb.2022.942328. |
[17] | Nie FJ, Wang LH, Huang YY, et al. Characteristics of microbial distribution in different oral niches of oral squamous cell carcinoma[J]. Front Cell Infect Microbiol, 2022, 12: 905653. DOI: 10.3389/fcimb.2022.905653. |
[18] | Li Y, Tan X, Zhao X, et al. Composition and function of oral microbiota between gingival squamous cell carcinoma and periodontitis[J]. Oral Oncol, 2020, 107: 104710. DOI: 10.1016/j.oraloncology.2020.104710. |
[19] | Shitozawa Y, Haro K, Ogawa M, et al. Differences in the microbiota of oral rinse, lesion, and normal site samples from patients with mucosal abnormalities on the tongue[J]. Sci Rep, 2022, 12(1): 16839. DOI: 10.1038/s41598-022-21031-8. |
[20] | Herreros-Pomares A, Hervás D, Bagan-Debón L, et al. On the oral microbiome of oral potentially malignant and malignant disorders: dysbiosis, loss of diversity, and pathogens enrichment[J]. Int J Mol Sci, 2023, 24(4): 3466. DOI: 10.3390/ijms24043466. |
[21] | Mohamed N, Litlekalsøy J, Ahmed IA, et al. Analysis of salivary mycobiome in a cohort of oral squamous cell carcinoma patients from Sudan identifies higher salivary carriage of malassezia as an independent and favorable predictor of overall survival[J]. Front Cell Infect Microbiol, 2021, 11: 673465. DOI: 10.3389/fcimb.2021.673465. |
[22] | Sami A, Elimairi I, Ryan CA, et al. Altered oral microbiome in Sudanese Toombak smokeless tobacco users carries a newly emerging risk of squamous cell carcinoma development and progression[J]. Sci Rep, 2023, 13(1): 6645. DOI: 10.1038/s41598-023-32892-y. |
[23] | Granato DC, Neves LX, Trino LD, et al. Meta-omics analysis indicates the saliva microbiome and its proteins associated with the prognosis of oral cancer patients[J]. Biochim Biophys Acta Proteins Proteom, 2021, 1869(8): 140659. DOI: 10.1016/j.bbapap.2021.140659. |
[24] | Medeiros MCD, The S, Bellile E, et al. Salivary microbiome changes distinguish response to chemoradiotherapy in patients with oral cancer[J]. Microbiome, 2023, 11(1): 268. DOI: 10.1186/s40168-023-01677-w. |
[25] | Mäkinen AI, Pappalardo VY, Buijs MJ, et al. Salivary microbiome profiles of oral cancer patients analyzed before and after treatment[J]. Microbiome, 2023, 11(1): 171. DOI: 10.1186/s40168-023-01613-y. |
[26] |
Guerrero-Preston R, Godoy-Vitorino F, Jedlicka A, et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment[J]. Oncotarget, 2016, 7(32): 51320-51334. DOI: 10.18632/oncotarget.9710.
pmid: 27259999 |
[27] | Kageyama S, Nagao YK, Ma JL, et al. Compositional shift of oral microbiota following surgical resection of tongue cancer[J]. Front Cell Infect Microbiol, 2020, 10: 600884. DOI: 10.3389/fcimb.2020.600884. |
[28] | Fotedar V, Ganju S, Fotedar S, et al. Oral microflora among oral cancer patients undergoing radiotherapy in regional cancer center, indira gandhi medical college, shimla[J]. Indian J Med Paediatr Oncol, 2019, 40(5): S61-S64. DOI: 10.4103/ijmpo.ijmpo_247_17. |
[29] | Maurya R, Rastogi M, Sen M, et al. Effect of chemo-radiotherapy on salivary flora of oral cancer patients[J]. J Pure Appl Microbiol, 2021, 15(3): 1501-1507. DOI: 10.22207/jpam.15.3.44. |
[30] | Anjali K, Arun AB, Bastian TS, et al. Oral microbial profile in oral cancer patients before and after radiation therapy in a cancer care center—a prospective study[J]. J Oral Maxillofac Pathol, 2020, 24(1): 117-124. DOI: 10.4103/jomfp.JOMFP_213_19. |
[31] |
Rui MY, Zhang XY, Huang JY, et al. The baseline oral microbiota predicts the response of locally advanced oral squamous cell carcinoma patients to induction chemotherapy: a prospective longitudinal study[J]. Radiother Oncol, 2021, 164: 83-91. DOI: 10.1016/j.radonc.2021.09.013.
pmid: 34571091 |
[32] | 过慈良, 江春平, 吴俊华. 肠道菌群与肿瘤免疫治疗[J]. 国际肿瘤学杂志, 2023, 50(7): 432-436. DOI: 10.3760/cma.j.cn371439-20230413-00083. |
[33] | 高敏, 冯静, 王丽, 等. 微生物群与肺癌的早期诊断及辅助治疗[J]. 国际肿瘤学杂志, 2022, 49(4): 247-251. DOI: 10.3760/cma.j.cn371439-20220208-00045. |
[34] |
Wang J, Sun F, Lin XY, et al. Cytotoxic T cell responses to streptococcus are associated with improved prognosis of oral squamous cell carcinoma[J]. Exp Cell Res, 2018, 362(1): 203-208. DOI: 10.1016/j.yexcr.2017.11.018.
pmid: 29154820 |
[35] | Zheng DW, Deng WW, Song WF, et al. Biomaterial-mediated modulation of oral microbiota synergizes with PD-1 blockade in mice with oral squamous cell carcinoma[J]. Nat Biomed Eng, 2022, 6(1): 32-43. DOI: 10.1038/s41551-021-00807-9. |
[36] | Wang Z, Zhou YJ, Han Q, et al. Synonymous point mutation of gtfB gene caused by therapeutic X-rays exposure reduced the biofilm formation and cariogenic abilities of streptococcus mutans[J]. Cell Biosci, 2021, 11(1): 91. DOI: 10.1186/s13578-021-00608-2. |
[37] | Neuzillet C, Marchais M, Vacher S, et al. Prognostic value of intratumoral fusobacterium nucleatum and association with immune-related gene expression in oral squamous cell carcinoma patients[J]. Sci Rep, 2021, 11(1): 7870. DOI: 10.1038/s41598-021-86816-9. |
[38] | Geng FX, Zhang YJ, Lu Z, et al. Fusobacterium nucleatum caused DNA damage and promoted cell proliferation by the Ku70/ p53 pathway in oral cancer cells[J]. DNA Cell Biol, 2020, 39(1): 144-151. DOI: 10.1089/dna.2019.5064. |
[39] | Lee J, Roberts JS, Atanasova KR, et al. Human primary epithelial cells acquire an epithelial-mesenchymal-transition phenotype during long-term infection by the oral opportunistic pathogen, porphyromonas gingivalis[J]. Front Cell Infect Microbiol, 2017, 7: 493. DOI: 10.3389/fcimb.2017.00493. |
[40] |
Liu S, Zhou X, Peng X, et al. Porphyromonas gingivalis promotes immunoevasion of oral cancer by protecting cancer from macrophage attack[J]. J Immunol, 2020, 205(1): 282-289. DOI: 10.4049/jimmunol.1901138.
pmid: 32471882 |
[41] | Hu XY, Shen X, Tian JX. The effects of periodontitis associated microbiota on the development of oral squamous cell carcinoma[J]. Biochem Biophys Res Commun, 2021, 576: 80-85. DOI: 10. 1016/j.bbrc.2021.07.092. |
[42] | Wei W, Li J, Shen X, et al. Oral microbiota from periodontitis promote oral squamous cell carcinoma development via γδ T cell activation[J]. mSystems, 2022, 7(5): e0046922. DOI: 10.1128/msystems.00469-22. |
[1] | Ni Guoying, Huang Qian, Liang Hongxiang, Yang Zhiyong, Ding Yingli. Analysis of changes in serum miR-499 and miR-362 levels and their relationship with prognosis in advanced NSCLC patients [J]. Journal of International Oncology, 2024, 51(8): 487-492. |
[2] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[3] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[4] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[5] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[6] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[7] | Wan Fang, Yang Gang, Li Rui, Wan Qijing. Expression levels and clinical significance of serum miR-497 and miR-383 in patients with esophageal cancer [J]. Journal of International Oncology, 2024, 51(4): 204-209. |
[8] | Yao Yixin, Shen Yulin. Predictive value of serum SOCS3 and TXNIP levels for the prognosis of patients with hepatocellular carcinoma treated with TACE [J]. Journal of International Oncology, 2024, 51(4): 217-222. |
[9] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[10] | Xie Shuping, Sun Yahong, Wang Chao. Prediction of efficacy of early-stage tumor markers combined with NLR and PLR for immunotherapy in gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 157-165. |
[11] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[12] | Peng Qin, Cai Yuting, Wang Wei. Advances on KPNA2 in liver cancer [J]. Journal of International Oncology, 2024, 51(3): 181-185. |
[13] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[14] | Jin Xudong, Chen Zhongjian, Mao Weimin. Research progress on the role of MTAP in malignant mesothelioma [J]. Journal of International Oncology, 2024, 51(2): 99-104. |
[15] | Huang Zhen, Chen Yongshun. Research progress of circulating tumor DNA in the diagnosis and treatment of hepatocellular carcinoma [J]. Journal of International Oncology, 2024, 51(1): 59-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||