[1] |
Long L, Assaraf YG, Lei ZN, et al. Genetic biomarkers of drug resistance: a compass of prognosis and targeted therapy in acute myeloid leukemia[J]. Drug Resist Updat, 2020, 52: 100703. DOI: 10.1016/j.drup.2020.100703.
|
[2] |
Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128. DOI: 10.1038/s41392-021-00507-5.
|
[3] |
Zhao P, Wang M, Chen M, et al. Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy[J]. Biomaterials, 2020, 254: 120142. DOI: 10.1016/j.biomaterials.2020.120142.
|
[4] |
Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature, 1992, 358(6382): 167-169. DOI: 10.1038/358167a0.
|
[5] |
Wang H, Zhou X, Li C, et al. The emerging role of pyroptosis in pediatric cancers: from mechanism to therapy[J]. J Hematol Oncol, 2022, 15(1): 140. DOI: 10.1186/s13045-022-01365-6.
|
[6] |
Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254. DOI: 10.1016/j.tibs.2016.10.004.
pmid: 27932073
|
[7] |
Wang L, Hauenstein AV. The NLRP3 inflammasome: mechanism of action, role in disease and therapies[J]. Mol Aspects Med, 2020, 76: 100889. DOI: 10.1016/j.mam.2020.100889.
|
[8] |
Wang K, Sun Q, Zhong X, et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis[J]. Cell, 2020, 180(5): 941-955.e20. DOI: 10.1016/j.cell.2020.02.002.
pmid: 32109412
|
[9] |
Bauer R, Rauch I. The NAIP/NLRC4 inflammasome in infection and pathology[J]. Mol Aspects Med, 2020, 76: 100863. DOI: 10.1016/j.mam.2020.100863.
|
[10] |
Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. DOI: 10.1038/nature22393.
|
[11] |
Rogers C, Erkes DA, Nardone A, et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation[J]. Nat Commun, 2019, 10(1): 1689. DOI: 10.1038/s41467-019-09397-2.
pmid: 30976076
|
[12] |
杨羽依, 刘秀萍. Gasdermin E诱导细胞焦亡的研究进展[J]. 中华病理学杂志, 2021, 50(4): 421-424. DOI: 10.3760/cma.j.cn112151-20200724-00589.
|
[13] |
Chen KW, Demarco B, Heilig R, et al. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly[J]. EMBO J, 2019, 38(10): e101638. DOI: 10.15252/embj.2019101638.
|
[14] |
Zhou T, Qian K, Li YY, et al. The pyroptosis-related gene signature predicts prognosis and reveals characterization of the tumor immune microenvironment in acute myeloid leukemia[J]. Front Pharmacol, 2022, 13: 951480. DOI: 10.3389/fphar.2022.951480.
|
[15] |
Johnson DC, Taabazuing CY, Okondo MC, et al. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia[J]. Nat Med, 2018, 24(8): 1151-1156. DOI: 10.1038/s41591-018-0082-y.
pmid: 29967349
|
[16] |
Ren J, Tao Y, Peng M, et al. Targeted activation of GPER enhances the efficacy of venetoclax by boosting leukemic pyroptosis and CD8+ T cell immune function in acute myeloid leukemia[J]. Cell Death Dis, 2022, 13(10): 915. DOI: 10.1038/s41419-022-05357-9.
|
[17] |
Leu WJ, Chang HS, Chen IS, et al. Antileukemic natural product induced both apoptotic and pyroptotic programmed cell death and differentiation effect[J]. Int J Mol Sci, 2021, 22(20): 11239. DOI: 10.3390/ijms222011239.
|
[18] |
Tian W, Wang Z, Tang NN, et al. Ascorbic acid sensitizes colorectal carcinoma to the cytotoxicity of arsenic trioxide via promoting reactive oxygen species-dependent apoptosis and pyroptosis[J]. Front Pharmacol, 2020, 11: 123. DOI: 10.3389/fphar.2020.00123.
pmid: 32153415
|
[19] |
Yang W, Liu S, Li Y, et al. Pyridoxine induces monocyte-macrophages death as specific treatment of acute myeloid leukemia[J]. Cancer Lett, 2020, 492: 96-105. DOI: 10.1016/j.canlet.2020.08.018.
pmid: 32860849
|
[20] |
Zhou L, Yao Q, Ma L, et al. TAF1 inhibitor Bay-299 induces cell death in acute myeloid leukemia[J]. Transl Cancer Res, 2021, 10(12): 5307-5318. DOI: 10.21037/tcr-21-2295.
pmid: 35116379
|
[21] |
Young MM, Bui V, Chen C, et al. FTY720 induces non-canonical phosphatidylserine externalization and cell death in acute myeloid leukemia[J]. Cell Death Dis, 2019, 10(11): 847. DOI: 10.1038/s41419-019-2080-5.
pmid: 31699964
|
[22] |
Zhou Y, Kong Y, Jiang M, et al. Curcumin activates NLRC4, AIM2, and IFI16 inflammasomes and induces pyroptosis by up-regulated ISG3 transcript factor in acute myeloid leukemia cell lines[J]. Cancer Biol Ther, 2022, 23(1): 328-335. DOI: 10.1080/15384047.2022.2058862.
pmid: 35435150
|
[23] |
Wiemels JL, Walsh KM, de Smith AJ, et al. GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21[J]. Nat Commun, 2018, 9(1): 286. DOI: 10.1038/s41467-017-02596-9.
pmid: 29348612
|
[24] |
Dai Y, Huang J, Kuang P, et al. Dasatinib and interferon alpha synergistically induce pyroptosis-like cell death in philadelphia chromosome positive acute lymphoblastic leukemia[J]. Am J Cancer Res, 2022, 12(6): 2817-2832.
pmid: 35812060
|
[25] |
Mondet J, Chevalier S, Mossuz P. Pathogenic roles of S100A8 and S100A9 proteins in acute myeloid and lymphoid leukemia: clinical and therapeutic impacts[J]. Molecules, 2021, 26(5): 1323. DOI: 10.3390/molecules26051323.
|
[26] |
Wang Z, Wu Z, Liu Y, et al. New development in CAR-T cell therapy[J]. J Hematol Oncol, 2017, 10(1): 53. DOI: 10.1186/s13045-017-0423-1.
|
[27] |
Liu Y, Fang Y, Chen X, et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome[J]. Sci Immunol, 2020, 5(43): eaax7969. DOI: 10.1126/sciimmunol.aax7969.
|
[28] |
Minciacchi VR, Kumar R, Krause DS. Chronic myeloid leukemia: a model disease of the past, present and future[J]. Cells, 2021, 10(1): 117. DOI: 10.3390/cells10010117.
|
[29] |
Zhang A, Yu J, Yan S, et al. The genetic polymorphism and expression profiles of NLRP3 inflammasome in patients with chronic myeloid leukemia[J]. Hum Immunol, 2018, 79(1): 57-62. DOI: 10.1016/j.humimm.2017.10.013.
pmid: 29097263
|
[30] |
Dong HQ, Liang SJ, Xu YL, et al. Liproxstatin-1 induces cell cycle arrest, apoptosis, and caspase-3/GSDME-dependent secon-dary pyroptosis in K562 cells[J]. Int J Oncol, 2022, 61(4): 119. DOI: 10.3892/ijo.2022.5409.
|
[31] |
Zhang J, Chen Y, He Q. Distinct characteristics of dasatinib-induced pyroptosis in gasdermin E-expressing human lung cancer A549 cells and neuroblastoma SH-SY5Y cells[J]. Oncol Lett, 2020, 20(1): 145-154. DOI: 10.3892/ol.2020.11556.
pmid: 32565942
|
[32] |
Sadaf S, Awasthi D, Singh AK, et al. Pyroptotic and apoptotic cell death in iNOS and nNOS overexpressing K562 cells: a mechanistic insight[J]. Biochem Pharmacol, 2020, 176: 113779. DOI: 10.1016/j.bcp.2019.113779.
|
[33] |
陈丽丽, 廖芬芳, 陈向洁, 等. 鬼臼苦素诱导Ph+慢性髓系白血病细胞焦亡及其相关分子机制研究[J]. 广东药科大学学报, 2022, 38(3): 1-5. DOI: 10.16809/j.cnki.2096-3653.2022031402.
|
[34] |
Sha Y, Jiang R, Miao Y, et al. The pyroptosis-related gene signature predicts prognosis and indicates the immune microenvironment status of chronic lymphocytic leukemia[J]. Front Immunol, 2022, 13: 939978. DOI: 10.3389/fimmu.2022.939978.
|