| [1] | 
																						 
											  Long L, Assaraf YG, Lei ZN, et al.  Genetic biomarkers of drug resistance: a compass of prognosis and targeted therapy in acute myeloid leukemia[J]. Drug Resist Updat, 2020, 52: 100703. DOI: 10.1016/j.drup.2020.100703. 
											 											 | 
										
																													
																						| [2] | 
																						 
											  Yu P, Zhang X, Liu N, et al.  Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128. DOI: 10.1038/s41392-021-00507-5.
											 											 | 
										
																													
																						| [3] | 
																						 
											  Zhao P, Wang M, Chen M, et al.  Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy[J]. Biomaterials, 2020, 254: 120142. DOI: 10.1016/j.biomaterials.2020.120142. 
											 											 | 
										
																													
																						| [4] | 
																						 
											  Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature, 1992, 358(6382): 167-169. DOI: 10.1038/358167a0.
											 											 | 
										
																													
																						| [5] | 
																						 
											  Wang H, Zhou X, Li C, et al.  The emerging role of pyroptosis in pediatric cancers: from mechanism to therapy[J]. J Hematol Oncol, 2022, 15(1): 140. DOI: 10.1186/s13045-022-01365-6. 
											 											 | 
										
																													
																						| [6] | 
																						 
											  Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254. DOI: 10.1016/j.tibs.2016.10.004. 
											 												 
																																					pmid: 27932073
																							 											 | 
										
																													
																						| [7] | 
																						 
											  Wang L, Hauenstein AV. The NLRP3 inflammasome: mechanism of action, role in disease and therapies[J]. Mol Aspects Med, 2020, 76: 100889. DOI: 10.1016/j.mam.2020.100889. 
											 											 | 
										
																													
																						| [8] | 
																						 
											  Wang K, Sun Q, Zhong X, et al.  Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis[J]. Cell, 2020, 180(5): 941-955.e20. DOI: 10.1016/j.cell.2020.02.002. 
											 												 
																																					pmid: 32109412
																							 											 | 
										
																													
																						| [9] | 
																						 
											  Bauer R, Rauch I. The NAIP/NLRC4 inflammasome in infection and pathology[J]. Mol Aspects Med, 2020, 76: 100863. DOI: 10.1016/j.mam.2020.100863. 
											 											 | 
										
																													
																						| [10] | 
																						 
											  Wang Y, Gao W, Shi X, et al.  Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. DOI: 10.1038/nature22393. 
											 											 | 
										
																													
																						| [11] | 
																						 
											  Rogers C, Erkes DA, Nardone A, et al.  Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation[J]. Nat Commun, 2019, 10(1): 1689. DOI: 10.1038/s41467-019-09397-2. 
											 												 
																																					pmid: 30976076
																							 											 | 
										
																													
																						| [12] | 
																						 
											  杨羽依, 刘秀萍. Gasdermin E诱导细胞焦亡的研究进展[J]. 中华病理学杂志, 2021, 50(4): 421-424. DOI: 10.3760/cma.j.cn112151-20200724-00589.
											 											 | 
										
																													
																						| [13] | 
																						 
											  Chen KW, Demarco B, Heilig R, et al.  Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly[J]. EMBO J, 2019, 38(10): e101638. DOI: 10.15252/embj.2019101638. 
											 											 | 
										
																													
																						| [14] | 
																						 
											  Zhou T, Qian K, Li YY, et al.  The pyroptosis-related gene signature predicts prognosis and reveals characterization of the tumor immune microenvironment in acute myeloid leukemia[J]. Front Pharmacol, 2022, 13: 951480. DOI: 10.3389/fphar.2022.951480. 
											 											 | 
										
																													
																						| [15] | 
																						 
											  Johnson DC, Taabazuing CY, Okondo MC, et al.  DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia[J]. Nat Med, 2018, 24(8): 1151-1156. DOI: 10.1038/s41591-018-0082-y. 
											 												 
																																					pmid: 29967349
																							 											 | 
										
																													
																						| [16] | 
																						 
											  Ren J, Tao Y, Peng M, et al.  Targeted activation of GPER enhances the efficacy of venetoclax by boosting leukemic pyroptosis and CD8+ T cell immune function in acute myeloid leukemia[J]. Cell Death Dis, 2022, 13(10): 915. DOI: 10.1038/s41419-022-05357-9. 
											 											 | 
										
																													
																						| [17] | 
																						 
											  Leu WJ, Chang HS, Chen IS, et al.  Antileukemic natural product induced both apoptotic and pyroptotic programmed cell death and differentiation effect[J]. Int J Mol Sci, 2021, 22(20): 11239. DOI: 10.3390/ijms222011239. 
											 											 | 
										
																													
																						| [18] | 
																						 
											  Tian W, Wang Z, Tang NN, et al.  Ascorbic acid sensitizes colorectal carcinoma to the cytotoxicity of arsenic trioxide via promoting reactive oxygen species-dependent apoptosis and pyroptosis[J]. Front Pharmacol, 2020, 11: 123. DOI: 10.3389/fphar.2020.00123. 
											 												 
																																					pmid: 32153415
																							 											 | 
										
																													
																						| [19] | 
																						 
											  Yang W, Liu S, Li Y, et al.  Pyridoxine induces monocyte-macrophages death as specific treatment of acute myeloid leukemia[J]. Cancer Lett, 2020, 492: 96-105. DOI: 10.1016/j.canlet.2020.08.018. 
											 												 
																																					pmid: 32860849
																							 											 | 
										
																													
																						| [20] | 
																						 
											  Zhou L, Yao Q, Ma L, et al.  TAF1 inhibitor Bay-299 induces cell death in acute myeloid leukemia[J]. Transl Cancer Res, 2021, 10(12): 5307-5318. DOI: 10.21037/tcr-21-2295. 
											 												 
																																					pmid: 35116379
																							 											 | 
										
																													
																						| [21] | 
																						 
											  Young MM, Bui V, Chen C, et al.  FTY720 induces non-canonical phosphatidylserine externalization and cell death in acute myeloid leukemia[J]. Cell Death Dis, 2019, 10(11): 847. DOI: 10.1038/s41419-019-2080-5. 
											 												 
																																					pmid: 31699964
																							 											 | 
										
																													
																						| [22] | 
																						 
											  Zhou Y, Kong Y, Jiang M, et al.  Curcumin activates NLRC4, AIM2, and IFI16 inflammasomes and induces pyroptosis by up-regulated ISG3 transcript factor in acute myeloid leukemia cell lines[J]. Cancer Biol Ther, 2022, 23(1): 328-335. DOI: 10.1080/15384047.2022.2058862. 
											 												 
																																					pmid: 35435150
																							 											 | 
										
																													
																						| [23] | 
																						 
											  Wiemels JL, Walsh KM, de Smith AJ, et al.  GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21[J]. Nat Commun, 2018, 9(1): 286. DOI: 10.1038/s41467-017-02596-9. 
											 												 
																																					pmid: 29348612
																							 											 | 
										
																													
																						| [24] | 
																						 
											  Dai Y, Huang J, Kuang P, et al.  Dasatinib and interferon alpha synergistically induce pyroptosis-like cell death in philadelphia chromosome positive acute lymphoblastic leukemia[J]. Am J Cancer Res, 2022, 12(6): 2817-2832. 
											 												 
																																					pmid: 35812060
																							 											 | 
										
																													
																						| [25] | 
																						 
											  Mondet J, Chevalier S, Mossuz P. Pathogenic roles of S100A8 and S100A9 proteins in acute myeloid and lymphoid leukemia: clinical and therapeutic impacts[J]. Molecules, 2021, 26(5): 1323. DOI: 10.3390/molecules26051323. 
											 											 | 
										
																													
																						| [26] | 
																						 
											  Wang Z, Wu Z, Liu Y, et al.  New development in CAR-T cell therapy[J]. J Hematol Oncol, 2017, 10(1): 53. DOI: 10.1186/s13045-017-0423-1. 
											 											 | 
										
																													
																						| [27] | 
																						 
											  Liu Y, Fang Y, Chen X, et al.  Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome[J]. Sci Immunol, 2020, 5(43): eaax7969. DOI: 10.1126/sciimmunol.aax7969. 
											 											 | 
										
																													
																						| [28] | 
																						 
											  Minciacchi VR, Kumar R, Krause DS. Chronic myeloid leukemia: a model disease of the past, present and future[J]. Cells, 2021, 10(1): 117. DOI: 10.3390/cells10010117. 
											 											 | 
										
																													
																						| [29] | 
																						 
											  Zhang A, Yu J, Yan S, et al.  The genetic polymorphism and expression profiles of NLRP3 inflammasome in patients with chronic myeloid leukemia[J]. Hum Immunol, 2018, 79(1): 57-62. DOI: 10.1016/j.humimm.2017.10.013. 
											 												 
																																					pmid: 29097263
																							 											 | 
										
																													
																						| [30] | 
																						 
											  Dong HQ, Liang SJ, Xu YL, et al.  Liproxstatin-1 induces cell cycle arrest, apoptosis, and caspase-3/GSDME-dependent secon-dary pyroptosis in K562 cells[J]. Int J Oncol, 2022, 61(4): 119. DOI: 10.3892/ijo.2022.5409. 
											 											 | 
										
																													
																						| [31] | 
																						 
											  Zhang J, Chen Y, He Q. Distinct characteristics of dasatinib-induced pyroptosis in gasdermin E-expressing human lung cancer A549 cells and neuroblastoma SH-SY5Y cells[J]. Oncol Lett, 2020, 20(1): 145-154. DOI: 10.3892/ol.2020.11556. 
											 												 
																																					pmid: 32565942
																							 											 | 
										
																													
																						| [32] | 
																						 
											  Sadaf S, Awasthi D, Singh AK, et al.  Pyroptotic and apoptotic cell death in iNOS and nNOS overexpressing K562 cells: a mechanistic insight[J]. Biochem Pharmacol, 2020, 176: 113779. DOI: 10.1016/j.bcp.2019.113779. 
											 											 | 
										
																													
																						| [33] | 
																						 
											  陈丽丽, 廖芬芳, 陈向洁, 等. 鬼臼苦素诱导Ph+慢性髓系白血病细胞焦亡及其相关分子机制研究[J]. 广东药科大学学报, 2022, 38(3): 1-5. DOI: 10.16809/j.cnki.2096-3653.2022031402.
											 											 | 
										
																													
																						| [34] | 
																						 
											  Sha Y, Jiang R, Miao Y, et al.  The pyroptosis-related gene signature predicts prognosis and indicates the immune microenvironment status of chronic lymphocytic leukemia[J]. Front Immunol, 2022, 13: 939978. DOI: 10.3389/fimmu.2022.939978. 
											 											 |