| [1] | 
																						 
											  Grauers Wiktorin H, Aydin E, Hellstrand K,  et al. NOX2-derived reactive oxygen species in cancer[J]. Oxid Med Cell Longev, 2020: 7095902. DOI: 10.1155/2020/7095902.
											 											 | 
										
																													
																						| [2] | 
																						 
											  Schröder K. NADPH oxidases: current aspects and tools[J]. Redox Biol, 2020, 34: 101512. DOI: 10.1016/j.redox.2020.101512. 
											 											 | 
										
																													
																						| [3] | 
																						 
											  Vermot A, Petit-Härtlein I, Smith SME,  et al. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology[J]. Antioxidants (Basel), 2021, 10(6): 890. DOI: 10.3390/antiox10060890.
											 											 | 
										
																													
																						| [4] | 
																						 
											  Xu L, Balzarolo M, Robinson EL,  et al. NOX1 mediates metabolic heart disease in mice and is upregulated in monocytes of humans with diastolic dysfunction[J]. Cardiovasc Res, 2022, 118(14): 2973-2984. DOI: 10.1093/cvr/cvab349. 
											 											 | 
										
																													
																						| [5] | 
																						 
											  Mohri H, Ninoyu Y, Sakaguchi H,  et al. Nox3-derived superoxide in cochleae induces sensorineural hearing loss[J]. J Neurosci, 2021, 41(21): 4716-4731. DOI: 10.1523/JNEUROSCI.2672-20.2021. 
											 											 | 
										
																													
																						| [6] | 
																						 
											  Trevelin SC, Shah AM, Lombardi G. Beyond bacterial killing: NADPH oxidase 2 is an immunomodulator[J]. Immunol Lett, 2020, 221: 39-48. DOI: 10.1016/j.imlet.2020.02.009. 
											 												 
																																					pmid: 32092360
																							 											 | 
										
																													
																						| [7] | 
																						 
											  Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management[J]. Am J Hematol, 2023, 98(3): 502-526. DOI: 10.1002/ajh.26822. 
											 												 
																																					pmid: 36594187
																							 											 | 
										
																													
																						| [8] | 
																						 
											  Jones CL. NOX2: a determinant of acute myeloid leukemia survival[J]. Haematologica, 2022, 107(11): 2530-2531. DOI: 10.3324/haematol.2022.280677. 
											 											 | 
										
																													
																						| [9] | 
																						 
											  Paolillo R, Boulanger M, Gâtel P,  et al. The NADPH oxidase NOX2 is a marker of adverse prognosis involved in chemoresistance of acute myeloid leukemias[J]. Haematologica, 2022, 107(11): 2562-2575. DOI: 10.3324/haematol.2021.279889. 
											 												 
																																					pmid: 35172562
																							 											 | 
										
																													
																						| [10] | 
																						 
											  Ijurko C, González-García N, Galindo-Villardón P,  et al. A 29-gene signature associated with NOX2 discriminates acute myeloid leukemia prognosis and survival[J]. Am J Hematol, 2022, 97(4): 448-457. DOI: 10.1002/ajh.26477. 
											 												 
																																					pmid: 35073432
																							 											 | 
										
																													
																						| [11] | 
																						 
											  Robinson AJ, Hopkins GL, Rastogi N,  et al. Reactive oxygen species drive proliferation in acute myeloid leukemia via the glycolytic regulator PFKFB3[J]. Cancer Res, 2020, 80(5): 937-949. DOI: 10.1158/0008-5472.CAN-19-1920. 
											 												 
																																					pmid: 31862780
																							 											 | 
										
																													
																						| [12] | 
																						 
											  Germon ZP, Sillar JR, Mannan A,  et al. Blockade of ROS production inhibits oncogenic signaling in acute myeloid leukemia and amplifies response to precision therapies[J]. Sci Signal, 2023, 16(778): eabp9586. DOI: 10.1126/scisignal.abp9586.
											 											 | 
										
																													
																						| [13] | 
																						 
											  Cao JY, Mansouri S, Frappier L. Changes in the nasopharyngeal carcinoma nuclear proteome induced by the EBNA1 protein of Epstein-Barr virus reveal potential roles for EBNA1 in metastasis and oxidative stress responses[J]. J Virol, 2012, 86(1): 382-394. DOI: 10.1128/JVI.05648-11. 
											 												 
																																					pmid: 22013061
																							 											 | 
										
																													
																						| [14] | 
																						 
											  Kim SM, Hur DY, Hong SW,  et al. EBV-encoded EBNA1 regulates cell viability by modulating miR34a-NOX2-ROS signaling in gastric cancer cells[J]. Biochem Biophys Res Commun, 2017, 494(3/4): 550-555. DOI: 10.1016/j.bbrc.2017.10.095. 
											 											 | 
										
																													
																						| [15] | 
																						 
											  Wang P, Shi Q, Deng WH,  et al. Relationship between expression of NADPH oxidase 2 and invasion and prognosis of human gastric cancer[J]. World J Gastroenterol, 2015, 21(20): 6271-6279. DOI: 10.3748/wjg.v21.i20.6271. 
											 											 | 
										
																													
																						| [16] | 
																						 
											  Wang Z, Tang T, Wang S,  et al. Aloin inhibits the proliferation and migration of gastric cancer cells by regulating NOX2-ROS-mediated pro-survival signal pathways[J]. Drug Des Devel Ther, 2020, 14: 145-155. DOI: 10.2147/DDDT.S219247. 
											 											 | 
										
																													
																						| [17] | 
																						 
											  You X, Ma M, Hou G,  et al. Gene expression and prognosis of NOX family members in gastric cancer[J]. Onco Targets Ther, 2018, 11: 3065-3074. DOI: 10.2147/OTT.S161287. 
											 											 | 
										
																													
																						| [18] | 
																						 
											  Luo M, Yang X, Chen HN,  et al. Drug resistance in colorectal cancer: an epigenetic overview[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188623. DOI: 10.1016/j.bbcan.2021.188623.
											 											 | 
										
																													
																						| [19] | 
																						 
											  Banskota S, Regmi SC, Kim JA. NOX1 to NOX2 Switch deactivates AMPK and induces invasive phenotype in colon cancer cells through overexpression of MMP-7[J]. Mol Cancer, 2015, 14: 123. DOI: 10.1186/s12943-015-0379-0. 
											 												 
																																					pmid: 26116564
																							 											 | 
										
																													
																						| [20] | 
																						 
											  Takiguchi K, Shimizu H, Shoda K,  et al. The expression and role of NADPH oxidase 2 in colon cancer[J]. Anticancer Res, 2023, 43(6): 2601-2608. DOI: 10.21873/anticanres.16427. 
											 												 
																																					pmid: 37247898
																							 											 | 
										
																													
																						| [21] | 
																						 
											  Guo Y, Han B, Luo K,  et al. NOX2-ROS-HIF-1α signaling is critical for the inhibitory effect of oleanolic acid on rectal cancer cell proliferation[J]. Biomed Pharmacother, 2017, 85: 733-739. DOI: 10.1016/j.biopha.2016.11.091. 
											 												 
																																					pmid: 27938946
																							 											 | 
										
																													
																						| [22] | 
																						 
											  Waghela BN, Vaidya FU, Pathak C. Upregulation of NOX-2 and Nrf-2 promotes 5-fluorouracil resistance of human colon carcinoma (HCT-116) cells[J]. Biochemistry (Mosc), 2021, 86(3): 262-274. DOI: 10.1134/S0006297921030044. 
											 												 
																																					pmid: 33838628
																							 											 | 
										
																													
																						| [23] | 
																						 
											  Yang WH, Huang Z, Wu J,  et al. A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer[J]. Mol Cancer Res, 2020, 18(1): 79-90. DOI: 10.1158/1541-7786.MCR-19-0691. 
											 											 | 
										
																													
																						| [24] | 
																						 
											  Yang WH, Chi JT. Hippo pathway effectors YAP/TAZ as novel determinants of ferroptosis[J]. Mol Cell Oncol, 2019, 7(1): 1699375. DOI: 10.1080/23723556.2019.1699375.
											 											 | 
										
																													
																						| [25] | 
																						 
											  Wang N, Song L, Xu Y,  et al. Loss of scribble confers cisplatin resistance during NSCLC chemotherapy via Nox2/ROS and Nrf2/PD-L1 signaling[J]. EBioMedicine, 2019, 47: 65-77. DOI: 10.1016/j.ebiom.2019.08.057. 
											 												 
																																					pmid: 31495720
																							 											 | 
										
																													
																						| [26] | 
																						 
											  Zhan Y, Chen Q, Song Y,  et al. Berbamine hydrochloride inhibits lysosomal acidification by activating Nox2 to potentiate chemotherapy-induced apoptosis via the ROS-MAPK pathway in human lung carcinoma cells[J]. Cell Biol Toxicol, 2023, 39(4): 1297-1317. DOI: 10.1007/s10565-022-09756-8.
											 											 | 
										
																													
																						| [27] | 
																						 
											  Zhao L, Chen X, Feng Y,  et al. COX7A1 suppresses the viability of human non-small cell lung cancer cells via regulating autophagy[J]. Cancer Med, 2019, 8(18): 7762-7773. DOI: 10.1002/cam4.2659. 
											 											 | 
										
																													
																						| [28] | 
																						 
											  Liu Y, Han D, Ma Q,  et al. Prognostic value of NOX2 as a potential biomarker for lung adenocarcinoma using TCGA and clinical validation[J]. Mol Med Rep, 2023, 27(2): 48. DOI: 10.3892/mmr.2023.12935. 
											 											 | 
										
																													
																						| [29] | 
																						 
											  Shimizu H, Katsurahara K, Inoue H,  et al. NADPH oxidase 2 has a crucial role in cell cycle progression of esophageal squamous cell carcinoma[J]. Ann Surg Oncol, 2022, 29(13): 8677-8687. DOI: 10.1245/s10434-022-12384-5.
											 											 | 
										
																													
																						| [30] | 
																						 
											  Hu Y, Ye X, Wang R,  et al. Current research progress in the role of reactive oxygen species in esophageal adenocarcinoma[J]. Transl Cancer Res, 2021, 10(3): 1568-1577. DOI: 10.21037/tcr-19-1985. 
											 												 
																																					pmid: 35116481
																							 											 |