国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (6): 352-356.doi: 10.3760/cma.j.cn371439-20221123-00070
收稿日期:
2022-11-23
修回日期:
2022-12-31
出版日期:
2023-06-08
发布日期:
2023-07-11
通讯作者:
曾德,Email:基金资助:
Received:
2022-11-23
Revised:
2022-12-31
Online:
2023-06-08
Published:
2023-07-11
Contact:
Zeng De,Email:Supported by:
摘要:
内分泌治疗耐药是激素受体阳性乳腺癌治疗过程中一个主要的挑战。近年来内分泌耐药机制主要聚焦于ESR1突变或融合、表观遗传学调控、信号转导通路调控异常、细胞周期调控、肿瘤干细胞、代谢重编程、肿瘤微环境和自噬。探讨乳腺癌内分泌治疗耐药机制的最新进展,可为激素受体阳性乳腺癌精准治疗提供更多的研究思路和治疗选择。
王文德, 曾德. 乳腺癌内分泌治疗耐药的机制研究进展[J]. 国际肿瘤学杂志, 2023, 50(6): 352-356.
Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer[J]. Journal of International Oncology, 2023, 50(6): 352-356.
[1] |
Cuzick J, Sestak I, Baum M, et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial[J]. Lancet Oncol, 2010, 11(12): 1135-1141. DOI: 10.1016/S1470-2045(10)70257-6.
doi: 10.1016/S1470-2045(10)70257-6 pmid: 21087898 |
[2] |
Clatot F, Perdrix A, Beaussire L, et al. Risk of early progression according to circulating ESR1 mutation, CA-15.3 and cfDNA increases under first-line anti-aromatase treatment in metastatic breast cancer[J]. Breast Cancer Research, 2020, 22(1): 56. DOI: 10.1186/s13058-020-01290-x.
doi: 10.1186/s13058-020-01290-x pmid: 32466779 |
[3] |
Jeselsohn R, Bergholz JS, Pun M, et al. Allele-specific chromatin recruitment and therapeutic vulnerabilities of ESR1 activating mutations[J]. Cancer Cell, 2018, 33(2): 173-186. e5. DOI: 10.1016/j.ccell.2018.01.004.
doi: S1535-6108(18)30004-7 pmid: 29438694 |
[4] |
Hartmaier RJ, Trabucco SE, Priedigkeit N, et al. Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer[J]. Ann Oncol, 2018, 29(4): 872-880. DOI: 10.1093/annonc/mdy025.
doi: S0923-7534(19)45471-9 pmid: 29360925 |
[5] |
Li L, Lin L, Veeraraghavan J, et al. Therapeutic role of recurrent ESR1-CCDC170 gene fusions in breast cancer endocrine resistance[J]. Breast Cancer Res, 2020, 22(1): 84. DOI: 10.1186/s13058-020-01325-3.
doi: 10.1186/s13058-020-01325-3 pmid: 32771039 |
[6] |
Sun G, Wang C, Wang S, et al. An H3K4me3 reader, BAP18 as an adaptor of COMPASS-like core subunits co-activates ERα action and associates with the sensitivity of antiestrogen in breast cancer[J]. Nucleic Acids Res, 2020, 48(19): 10768-10784. DOI: 10.1093/nar/gkaa787.
doi: 10.1093/nar/gkaa787 pmid: 32986841 |
[7] |
Achinger-Kawecka J, Valdes-Mora F, Luu PL, et al. Epigenetic reprogramming at estrogen-receptor binding sites alters 3D chromatin landscape in endocrine-resistant breast cancer[J]. Nat Commun, 2020, 11(1): 320. DOI: 10.1038/s41467-019-14098-x.
doi: 10.1038/s41467-019-14098-x pmid: 31949157 |
[8] |
Nassa G, Salvati A, Tarallo R, et al. Inhibition of histone methyltransferase DOT1L silences ERα gene and blocks proliferation of antiestrogen-resistant breast cancer cells[J]. Sci Adv, 2019, 5(2): eaav5590. DOI: 10.1126/sciadv.aav5590.
doi: 10.1126/sciadv.aav5590 |
[9] |
Linares A, Assou S, Lapierre M, et al. Increased expression of the HDAC9 gene is associated with antiestrogen resistance of breast cancers[J]. Mol Oncol, 2019, 13(7): 1534-1547. DOI: 10.1002/1878-0261.12505.
doi: 10.1002/1878-0261.12505 pmid: 31099456 |
[10] |
Yu S, Gong X, Ma Z, et al. Endocrine resistant breast cancer cells with loss of ERα expression retain proliferative ability by reducing caspase7-mediated HDAC3 cleavage[J]. Cell Oncol (Dordr), 2020, 43(1): 65-80. DOI: 10.1007/s13402-019-00439-x.
doi: 10.1007/s13402-019-00439-x |
[11] |
Jiang Z, Li W, Hu X, et al. Tucidinostat plus exemestane for postmenopausal patients with advanced, hormone receptor-positive breast cancer (ACE): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2019, 20(6): 806-815. DOI: 10.1016/S1470-2045(19)30164-0.
doi: S1470-2045(19)30164-0 pmid: 31036468 |
[12] |
Peng WX, Koirala P, Zhou H, et al. Lnc-DC promotes estrogen Independent growth and tamoxifen resistance in breast cancer[J]. Cell Death Dis, 2021, 12(11): 1000. DOI: 10.1038/s41419-021-04288-1.
doi: 10.1038/s41419-021-04288-1 |
[13] |
Feng J, Wen T, Li Z, et al. Cross-talk between the ER pathway and the lncRNA MAFG-AS1/miR-339-5p/CDK2 axis promotes progression of ER+ breast cancer and confers tamoxifen resistance[J]. Aging (Albany NY), 2020, 12(20): 20658-20683. DOI: 10.18632/aging.103966.
doi: 10.18632/aging.103966 |
[14] |
Li J, Lu M, Jin J, et al. miR-449a suppresses tamoxifen resistance in human breast cancer cells by targeting ADAM22[J]. Cell Physiol Biochem, 2018, 50(1): 136-149. DOI: 10.1159/000493964.
doi: 10.1159/000493964 pmid: 30278449 |
[15] |
Croessmann S, Formisano L, Kinch LN, et al. Combined blockade of activating ERBB2 mutations and ER results in synthetic lethality of ER+/HER2 mutant breast cancer[J]. Clin Cancer Res, 2019, 25(1): 277-289. DOI: 10.1158/1078-0432.CCR-18-1544.
doi: 10.1158/1078-0432.CCR-18-1544 pmid: 30314968 |
[16] |
Ribas R, Pancholi S, Rani A, et al. Targeting tumour re-wiring by triple blockade of mTORC1, epidermal growth factor, and oestrogen receptor signalling pathways in endocrine-resistant breast cancer[J]. Breast Cancer Res, 2018, 20(1): 44. DOI: 10.1186/s13058-018-0983-1.
doi: 10.1186/s13058-018-0983-1 pmid: 29880014 |
[17] |
Modi S, Jacot W, Yamashita T, et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer[J]. N Engl J Med, 2022, 387(1): 9-20. DOI: 10.1056/NEJMoa2203690.
doi: 10.1056/NEJMoa2203690 |
[18] |
Choi HJ, Joo HS, Won HY, et al. Role of RBP2-induced ER and IGF1R-ErbB signaling in tamoxifen resistance in breast cancer[J]. J Natl Cancer Inst, 2018, 110(4): 400-410. DOI: 10.1093/jnci/djx207.
doi: 10.1093/jnci/djx207 |
[19] |
Nagle AM, Levine KM, Tasdemir N, et al. Loss of E-cadherin enhances IGF1-IGF1R pathway activation and sensitizes breast cancers to anti-IGF1R/InsR inhibitors[J]. Clin Cancer Res, 2018, 24(20): 5165-5177. DOI: 10.1158/1078-0432.CCR-18-0279.
doi: 10.1158/1078-0432.CCR-18-0279 pmid: 29941485 |
[20] |
Drago JZ, Formisano L, Juric D, et al. FGFR1 amplification me-diates endocrine resistance but retains TORC sensitivity in metastatic hormone receptor-positive (HR+) breast cancer[J]. Clin Cancer Res, 2019, 25(21): 6443-6451. DOI: 10.1158/1078-0432.CCR-19-0138.
doi: 10.1158/1078-0432.CCR-19-0138 |
[21] |
Walsh L, Haley KE, Moran B, et al. BET inhibition as a rational therapeutic strategy for invasive lobular breast cancer[J]. Clin Cancer Res, 2019, 25(23): 7139-7150. DOI: 10.1158/1078-0432.CCR-19-0713.
doi: 10.1158/1078-0432.CCR-19-0713 pmid: 31409615 |
[22] |
Jacquemetton J, Kassem L, Poulard C, et al. Analysis of genomic and non-genomic signaling of estrogen receptor in PDX models of breast cancer treated with a combination of the PI3K inhibitor alpelisib (BYL719) and fulvestrant[J]. Breast Cancer Res, 2021, 23(1): 57. DOI: 10.1186/s13058-021-01433-8.
doi: 10.1186/s13058-021-01433-8 pmid: 34020697 |
[23] |
André F, Ciruelos EM, Juric D, et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR-1[J]. Ann Oncol, 2021, 32(2): 208-217. DOI: 10.1016/j.annonc.2020.11.011.
doi: 10.1016/j.annonc.2020.11.011 pmid: 33246021 |
[24] |
Dent S, Cortés J, Im YH, et al. Phase Ⅲ randomized study of taselisib or placebo with fulvestrant in estrogen receptor-positive, PIK3CA-mutant, HER2-negative, advanced breast cancer: the SANDPIPER trial[J]. Ann Oncol, 2021, 32(2): 197-207. DOI: 10.1016/j.annonc.2020.10.596.
doi: 10.1016/j.annonc.2020.10.596 pmid: 33186740 |
[25] |
Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target[J]. Oncotarget, 2018, 9(48): 28989-29006. DOI: 10.18632/oncotarget.25615.
doi: 10.18632/oncotarget.25615 pmid: 29989029 |
[26] |
Vidula N, Yau C, Rugo H. Trophoblast cell surface antigen 2 gene (TACSTD2) expression in primary breast cancer[J]. Breast Cancer Res Treat, 2022, 194(3): 569-575. DOI: 10.1007/s10549-022-06660-x.
doi: 10.1007/s10549-022-06660-x |
[27] |
Rugo HS, Bardia A, Marmé F, et al. Sacituzumab govitecan in hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer[J]. J Clin Oncol, 2022, 40(29): 3365-3376. DOI: 10.1200/JCO.22.01002.
doi: 10.1200/JCO.22.01002 |
[28] |
Pancholi S, Ribas R, Simigdala N, et al. Tumour kinome re-wiring governs resistance to palbociclib in oestrogen receptor positive breast cancers, highlighting new therapeutic modalities[J]. Oncogene, 2020, 39(25): 4781-4797. DOI: 10.1038/s41388-020-1284-6.
doi: 10.1038/s41388-020-1284-6 pmid: 32307447 |
[29] |
Kettner NM, Vijayaraghavan S, Durak MG, et al. Combined inhibition of STAT3 and DNA repair in palbociclib-resistant ER-positive breast cancer[J]. Clin Cancer Res, 2019, 25(13): 3996-4013. DOI: 10.1158/1078-0432.CCR-18-3274.
doi: 10.1158/1078-0432.CCR-18-3274 pmid: 30867218 |
[30] |
Alves CL, Ehmsen S, Terp MG, et al. Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer[J]. Nat Commun, 2021, 12(1): 5112. DOI: 10.1038/s41467-021-25422-9.
doi: 10.1038/s41467-021-25422-9 pmid: 34433817 |
[31] |
Bardia A, Hurvitz SA, DeMichele A, et al. Phase Ⅰ/Ⅱ trial of exemestane, ribociclib, and everolimus in women with HR+/HER2-advanced breast cancer after progression on CDK4/6 inhibitors (TRINITI-1)[J]. Clin Cancer Res, 2021, 27(15): 4177-4185. DOI: 10.1158/1078-0432.CCR-20-2114.
doi: 10.1158/1078-0432.CCR-20-2114 |
[32] |
Santiago-Gómez A, Kedward T, Simões BM, et al. PAK4 regulates stemness and progression in endocrine resistant ER-positive metastatic breast cancer[J]. Cancer Lett, 2019, 458: 66-75. DOI: 10.1016/j.canlet.2019.05.014.
doi: S0304-3835(19)30309-X pmid: 31121213 |
[33] |
Simões BM, Santiago-Gómez A, Chiodo C, et al. Targeting STAT3 signaling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer[J]. Oncogene, 2020, 39(25): 4896-4908. DOI: 10.1038/s41388-020-1335-z.
doi: 10.1038/s41388-020-1335-z pmid: 32472077 |
[34] |
Mavingire N, Campbell P, Wooten J, et al. Cancer stem cells: culprits in endocrine resistance and racial disparities in breast cancer outcomes[J]. Cancer Lett, 2021, 500: 64-74. DOI: 10.1016/j.canlet.2020.12.014.
doi: 10.1016/j.canlet.2020.12.014 pmid: 33309858 |
[35] |
Piggott L, Silva A, Robinson T, et al. Acquired resistance of ER-positive breast cancer to endocrine treatment confers an adaptive sensitivity to TRAIL through posttranslational downregulation of c-FLIP[J]. Clin Cancer Res, 2018, 24(10): 2452-2463. DOI: 10.1158/1078-0432.CCR-17-1381.
doi: 10.1158/1078-0432.CCR-17-1381 pmid: 29363524 |
[36] |
Bacci M, Lorito N, Ippolito L, et al. Reprogramming of amino acid transporters to support aspartate and glutamate dependency sustains endocrine resistance in breast cancer[J]. Cell Rep, 2019, 28(1): 104-118. e8. DOI: 10.1016/j.celrep.2019.06.010.
doi: S2211-1247(19)30768-5 pmid: 31269432 |
[37] |
He M, Jin Q, Chen C, et al. The miR-186-3p/EREG axis orchestrates tamoxifen resistance and aerobic glycolysis in breast cancer cells[J]. Oncogene, 2019, 38(28): 5551-5565. DOI: 10.1038/s41388-019-0817-3.
doi: 10.1038/s41388-019-0817-3 pmid: 30967627 |
[38] |
Gökmen-Polar Y, Neelamraju Y, Goswami CP, et al. Splicing factor ESRP1 controls ER-positive breast cancer by altering metabolic pathways[J]. EMBO Rep, 2019, 20(2): e46078. DOI: 10.15252/embr.201846078.
doi: 10.15252/embr.201846078 |
[39] |
Morotti M, Bridges E, Valli A, et al. Hypoxia-induced switch in SNAT2/SLC38A2 regulation generates endocrine resistance in breast cancer[J]. Proc Natl Acad Sci U S A, 2019, 116(25): 12452-12461. DOI: 10.1073/pnas.1818521116.
doi: 10.1073/pnas.1818521116 |
[40] |
Joffroy CM, Buck MB, Stope MB, et al. Antiestrogens induce transforming growth factor beta-mediated immunosuppression in breast cancer[J]. Cancer Res, 2010, 70(4): 1314-1322. DOI: 10.1158/0008-5472.CAN-09-3292.
doi: 10.1158/0008-5472.CAN-09-3292 pmid: 20145137 |
[41] |
Anurag M, Zhu M, Huang C, et al. Immune checkpoint profiles in luminal B breast cancer (alliance)[J]. J Natl Cancer Inst, 2020, 112(7): 737-746. DOI: 10.1093/jnci/djz213.
doi: 10.1093/jnci/djz213 pmid: 31665365 |
[42] |
Yang F, Xie HY, Yang LF, et al. Stabilization of MORC2 by estrogen and antiestrogens through GPER1-PRKACA-CMA pathway contributes to estrogen-induced proliferation and endocrine resistance of breast cancer cells[J]. Autophagy, 2020, 16(6): 1061-1076. DOI: 10.1080/15548627.2019.1659609.
doi: 10.1080/15548627.2019.1659609 pmid: 32401166 |
[43] |
Actis C, Muzio G, Autelli R. Autophagy triggers tamoxifen resistance in human breast cancer cells by preventing drug-induced lysosomal damage[J]. Cancers (Basel), 2021, 13(6): 1252. DOI: 10.3390/cancers13061252.
doi: 10.3390/cancers13061252 |
[1] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[2] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[3] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[4] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[5] | 龚艳, 陈洪雷. 微RNA调控卵巢癌顺铂耐药的机制研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 186-190. |
[6] | 陈波光, 王苏贵, 张永杰. 血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
[7] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[8] | 王景, 许文婷. 中性粒细胞与淋巴细胞比值、癌胚抗原联合凝血指标对直径≤1.0 cm的良恶性乳腺结节鉴别诊断价值研究[J]. 国际肿瘤学杂志, 2023, 50(9): 520-526. |
[9] | 冯诚天, 黄芙蓉, 曹世玉, 王健宇, 南丁阿比雅思, 姜永冬, 朱娟英. HER2阳性乳腺癌患者HER2表达水平与影像学特征的关系[J]. 国际肿瘤学杂志, 2023, 50(9): 527-531. |
[10] | 黄辉, 丁江华. 靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. |
[11] | 冯东旭, 吴炜, 高平发, 王军, 施丽娟, 陈大伟, 李文兵, 张美峰. miR-451通过调控Rho/ROCK1信号通路对乳腺癌细胞糖酵解及凋亡的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 449-456. |
[12] | 安荣, 刘美华, 王佩晨, 王晓慧. Nrf2在卵巢癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(8): 493-497. |
[13] | 李青珊, 谢鑫, 张楠, 刘帅. 放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[14] | 张丽, 向卓, 王强, 毕经旺. CAR-T免疫治疗相关的细胞因子释放综合征研究进展[J]. 国际肿瘤学杂志, 2023, 50(6): 377-381. |
[15] | 丁浩, 应劲涛, 付茂勇. CAR-T在食管鳞状细胞癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 231-235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||