
国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (10): 630-634.doi: 10.3760/cma.j.cn371439-20220715-00126
收稿日期:2022-07-15
									
				
											修回日期:2022-08-23
									
				
									
				
											出版日期:2022-10-08
									
				
											发布日期:2022-12-01
									
			通讯作者:
					罗长江
											E-mail:157264922@qq.com
												基金资助:Received:2022-07-15
									
				
											Revised:2022-08-23
									
				
									
				
											Online:2022-10-08
									
				
											Published:2022-12-01
									
			Contact:
					Luo Changjiang   
											E-mail:157264922@qq.com
												Supported by:摘要:
目前,针对结直肠癌包括化疗、靶向治疗及免疫治疗在内的许多治疗方案因耐药变异及患者个体化原因导致疗效欠佳,现阶段迫切需要寻找新的精准、有效的治疗措施。研究表明,结直肠癌的发生发展涉及炎症、免疫及胆固醇代谢等多个过程,并存在多类潜在的交互反应,明确各类因素的调控机制有助于为结直肠癌治疗提供新思路。
杨驰, 罗长江. 结直肠癌炎症、免疫及胆固醇代谢背景研究进展[J]. 国际肿瘤学杂志, 2022, 49(10): 630-634.
Yang Chi, Luo Changjiang. Research progress on the background of inflammation, immunity and cholesterol metabolism in colorectal cancer[J]. Journal of International Oncology, 2022, 49(10): 630-634.
| [1] |  
											  Sung H, Ferlay J, Siegel RL, et al.  Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. 
											 												 doi: 10.3322/caac.21660  | 
										
| [2] |  
											  de Martel C, Georges D, Bray F, et al.  Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis[J]. Lancet Glob Health, 2020, 8(2): e180-e190. DOI: 10.1016/S2214-109X(19)30488-7. 
											 												 doi: 10.1016/S2214-109X(19)30488-7 pmid: 31862245  | 
										
| [3] |  
											  Zhao H, Wu L, Yan G, et al.  Inflammation and tumor progression: signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6(1): 263. DOI: 10.1038/s41392-021-00658-5. 
											 												 doi: 10.1038/s41392-021-00658-5  | 
										
| [4] |  
											  Nadeem MS, Kumar V, Al-Abbasi FA, et al.  Risk of colorectal cancer in inflammatory bowel diseases[J]. Semin Cancer Biol, 2020, 64: 51-60. DOI: 10.1016/j.semcancer.2019.05.001. 
											 												 doi: S1044-579X(19)30016-1 pmid: 31112753  | 
										
| [5] |  
											  Kosinsky RL, Chua RL, Qui M, et al.  Loss of RNF40 decreases NF-κB activity in colorectal cancer cells and reduces colitis burden in mice[J]. J Crohns Colitis, 2019, 13(3): 362-373. DOI: 10.1093/ecco-jcc/jjy165. 
											 												 doi: 10.1093/ecco-jcc/jjy165 pmid: 30321325  | 
										
| [6] |  
											  Zhu G, Cheng Z, Huang Y, et al.  MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NF‑κB/AP‑1 signa‑ ling pathway[J]. Int J Mol Med, 2020, 45(1): 131-140. DOI: 10. 3892/ijmm.2019.4390. 
											 												 doi: 10. 3892/ijmm.2019.4390  | 
										
| [7] |  
											  Wang R, Ma Y, Zhan S, et al.  B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κ B pathway to induce VEGFA expression[J]. Cell Death Dis, 2020, 11(1): 55. DOI: 10.1038/s41419-020-2252-3. 
											 												 doi: 10.1038/s41419-020-2252-3  | 
										
| [8] |  
											  Liu L, Zhai Z, Wang D, et al.  The association between IL-1 family gene polymorphisms and colorectal cancer: a meta-analysis[J]. Gene, 2021, 769: 145187. DOI: 10.1016/j.gene.2020.145187. 
											 												 doi: 10.1016/j.gene.2020.145187  | 
										
| [9] |  
											  Cheng KJ, Mejia Mohammed EH, Khong TL, et al.  IL-1α and colorectal cancer pathogenesis: enthralling candidate for anti-cancer therapy[J]. Crit Rev Oncol Hematol, 2021, 163: 103398. DOI: 10.1016/j.critrevonc.2021.103398. 
											 												 doi: 10.1016/j.critrevonc.2021.103398  | 
										
| [10] |  
											  Heichler C, Scheibe K, Schmied A, et al.  STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis[J]. Gut, 2020, 69(7): 1269-1282. DOI: 10.1136/gutjnl-2019-319200. 
											 												 doi: 10.1136/gutjnl-2019-319200 pmid: 31685519  | 
										
| [11] |  
											  Xu K, Zhan Y, Yuan Z, et al.  Hypoxia induces drug resistance in colorectal cancer through the HIF-1α/miR-338-5p/IL-6 feedback loop[J]. Mol Ther, 2019, 27(10): 1810-1824. DOI: 10.1016/j.ymthe.2019.05.017. 
											 												 doi: S1525-0016(19)30264-3 pmid: 31208913  | 
										
| [12] |  
											  Perez LG, Kempski J, McGee HM, et al.  TGF-β signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer[J]. Nat Commun, 2020, 11(1): 2608. DOI: 10.1038/s41467-020-16363-w. 
											 												 doi: 10.1038/s41467-020-16363-w pmid: 32451418  | 
										
| [13] |  
											  Sun P, Quan JC, Wang S, et al.  lncRNA-PACER upregulates COX-2 and PGE2 through the NF-κB pathway to promote the proli-feration and invasion of colorectal-cancer cells[J]. Gastroenterol Rep (Oxf), 2021, 9(3): 257-268. DOI: 10.1093/gastro/goaa060. 
											 												 doi: 10.1093/gastro/goaa060  | 
										
| [14] |  
											  Chang J, Tang N, Fang Q, et al.  Inhibition of COX-2 and 5-LOX regulates the progression of colorectal cancer by promoting PTEN and suppressing PI3K/AKT pathway[J]. Biochem Biophys Res Commun, 2019, 517(1): 1-7. DOI: 10.1016/j.bbrc.2018.01.061. 
											 												 doi: 10.1016/j.bbrc.2018.01.061  | 
										
| [15] |  
											  Zhang Z, Ghosh A, Connolly PJ, et al.  Gut-restricted selective cyclooxygenase-2 (COX-2) inhibitors for chemoprevention of colorectal cancer[J]. J Med Chem, 2021, 64(15): 11570-11596. DOI: 10.1021/acs.jmedchem.1c00890. 
											 												 doi: 10.1021/acs.jmedchem.1c00890 pmid: 34279934  | 
										
| [16] |  
											  Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-685. DOI: 10.1001/jama.2021.0106. 
											 												 doi: 10.1001/jama.2021.0106 pmid: 33591350  | 
										
| [17] |  
											  胡诗琪, 许隽颖, 孙清, 等. 免疫检查点抑制剂治疗晚期结直肠癌的疗效观察[J]. 现代肿瘤医学, 2022, 30(17): 3143-3146. DOI: 10.3969/j.issn.1672-4992.2022.17.015. 
											 												 doi: 10.3969/j.issn.1672-4992.2022.17.015  | 
										
| [18] |  
											  Formica V, Sera F, Cremolini C, et al.  KRAS and BRAF mutations in stage Ⅱ and Ⅲ colon cancer: a systematic review and meta-analysis[J]. J Natl Cancer Inst, 2022, 114(4): 517-527. DOI: 10.1093/jnci/djab190. 
											 												 doi: 10.1093/jnci/djab190  | 
										
| [19] |  
											  Taieb J, Le Malicot K, Shi Q, et al.  Prognostic value of BRAF and KRAS mutations in MSI and MSS stage Ⅲ colon cancer[J]. J Natl Cancer Inst, 2016, 109(5): djw272. DOI: 10.1093/jnci/djw272. 
											 												 doi: 10.1093/jnci/djw272  | 
										
| [20] |  
											  Toor SM, Murshed K, Al-Dhaheri M, et al.  Immune checkpoints in circulating and tumor-infiltrating CD4+ T cell subsets in colorectal cancer patients[J]. Front Immunol, 2019, 10: 2936. DOI: 10.3389/fimmu.2019.02936. 
											 												 doi: 10.3389/fimmu.2019.02936  | 
										
| [21] |  
											  Rahma OE, Hodi FS. The intersection between tumor angiogenesis and immune suppression[J]. Clin Cancer Res, 2019, 25(18): 5449-5457. DOI: 10.1158/1078-0432.CCR-18-1543. 
											 												 doi: 10.1158/1078-0432.CCR-18-1543 pmid: 30944124  | 
										
| [22] |  
											  Ning T, Li J, He Y, et al.  Exosomal miR-208b related with oxaliplatin resistance promotes Treg expansion in colorectal cancer[J]. Mol Ther, 2021, 29(9): 2723-2736. DOI: 10.1016/j.ymthe.2021.04.028. 
											 												 doi: 10.1016/j.ymthe.2021.04.028 pmid: 33905821  | 
										
| [23] |  
											  Gao Y, Nan X, Shi X, et al.  SREBP1 promotes the invasion of colorectal cancer accompanied upregulation of MMP7 expression and NF-κB pathway activation[J]. BMC Cancer, 2019, 19(1): 685. DOI: 10.1186/s12885-019-5904-x. 
											 												 doi: 10.1186/s12885-019-5904-x pmid: 31299935  | 
										
| [24] |  
											  Jin Y, Chen Z, Dong J, et al.  SREBP1/FASN/cholesterol axis facilitates radioresistance in colorectal cancer[J]. FEBS Open Bio, 2021, 11(5): 1343-1352.DOI: 10.1002/2211-5463.13137. 
											 												 doi: 10.1002/2211-5463.13137 pmid: 33665967  | 
										
| [25] |  
											  Gao S, Soares F, Wang S, et al.  CRISPR screens identify cholesterol biosynthesis as a therapeutic target on stemness and drug resistance of colon cancer[J]. Oncogene, 2021, 40(48): 6601-6613. DOI: 10.1038/s41388-021-01882-7. 
											 												 doi: 10.1038/s41388-021-01882-7 pmid: 34621019  | 
										
| [26] |  
											  He L, Li H, Pan C, et al.  Squalene epoxidase promotes colorectal cancer cell proliferation through accumulating calcitriol and activa-ting CYP24A1-mediated MAPK signaling[J]. Cancer Commun (Lond), 2021, 41(8): 726-746. DOI: 10.1002/cac2.12187. 
											 												 doi: 10.1002/cac2.12187  | 
										
| [27] |  
											  Jun SY, Brown AJ, Chua NK, et al.  Reduction of squalene epoxidase by cholesterol accumulation accelerates colorectal cancer progression and metastasis[J]. Gastroenterology, 2021, 160(4): 1194-1207.e28. DOI: 10.1053/j.gastro.2020.09.009. 
											 												 doi: 10.1053/j.gastro.2020.09.009 pmid: 32946903  | 
										
| [28] |  
											  Wang C, Li P, Xuan J, et al.  Cholesterol enhances colorectal cancer progression via ROS elevation and MAPK signaling pathway activation[J]. Cell Physiol Biochem, 2017, 42(2): 729-742. DOI: 10.1159/000477890. 
											 												 doi: 10.1159/000477890 pmid: 28618417  | 
										
| [29] |  
											  Liang X, Cao Y, Xiang S, et al.  LXRα-mediated downregulation of EGFR suppress colorectal cancer cell proliferation[J]. J Cell Biochem, 2019, 120(10): 17391-17404. DOI: 10.1002/jcb.29003. 
											 												 doi: 10.1002/jcb.29003 pmid: 31104333  | 
										
| [30] |  
											  Wang D, Yang L, Yu W, et al.  Colorectal cancer cell-derived CCL20 recruits regulatory T cells to promote chemoresistance via FOXO1/CEBPB/NF-κB signaling[J]. J Immunother Cancer, 2019, 7(1): 215. DOI: 10.1186/s40425-019-0701-2. 
											 												 doi: 10.1186/s40425-019-0701-2 pmid: 31395078  | 
										
| [31] |  
											  Liu C, Liu R, Wang B, et al.  Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer[J]. J Immunother Cancer, 2021, 9(1): e001895. DOI: 10.1136/jitc-2020-001895. 
											 												 doi: 10.1136/jitc-2020-001895  | 
										
| [32] |  
											  Pastille E, Wasmer MH, Adamczyk A, et al.  The IL-33/ST2 pathway shapes the regulatory T cell phenotype to promote intestinal cancer[J]. Mucosal Immunol, 2019, 12(4): 990-1003. DOI: 10.1038/s41385-019-0176-y. 
											 												 doi: 10.1038/s41385-019-0176-y pmid: 31165767  | 
										
| [33] |  
											  Sottero B, Rossin D, Poli G, et al.  Lipid oxidation products in the pathogenesis of inflammation-related gut diseases[J]. Curr Med Chem, 2018, 25(11): 1311-1326. DOI: 10.2174/0929867324666170619104105. 
											 												 doi: 10.2174/0929867324666170619104105 pmid: 28625152  | 
										
| [34] |  
											  MA X, BI E, LU Y, et al.  Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment[J]. Cell Metab, 2019, 30(1): 143-156.e5. DOI: 10.1016/j.cmet.2019.04.002. 
											 												 doi: 10.1016/j.cmet.2019.04.002  | 
										
| [35] |  
											  Liu C, Yao Z, Wang J, et al.  Macrophage-derived CCL5 facilitates immune escape of colorectal cancer cells via the p65/STAT3-CSN5-PD-L1 pathway[J]. Cell Death Differ, 2020, 27(6): 1765-1781. DOI: 10.1038/s41418-019-0460-0. 
											 												 doi: 10.1038/s41418-019-0460-0 pmid: 31802034  | 
										
| [36] |  
											  Buhrmann C, Kunnumakkara AB, Popper B, et al.  Calebin a potentiates the effect of 5-FU and TNF-β (lymphotoxin α) against human colorectal cancer cells: potential role of NF-κB[J]. Int J Mol Sci, 2020, 21(7): 2393. DOI: 10.3390/ijms21072393. 
											 												 doi: 10.3390/ijms21072393  | 
										
| [37] |  
											  Huang Y, Liu Z, Li L, et al.  Sesamin inhibits hypoxia-stimulated angiogenesis via the NF-κB p65/HIF-1α/VEGFA signaling pathway in human colorectal cancer[J]. Food Funct, 2022, 13(17): 8989-8997. DOI: 10.1039/d2fo00345g. 
											 												 doi: 10.1039/d2fo00345g  | 
										
| [38] |  
											  Yilmaz Ç, Köksoy S, Çeker T, et al.  Diclofenac down-regulates COX-2 induced expression of CD44 and ICAM-1 in human HT29 colorectal cancer cells[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(11): 2259-2272. DOI: 10.1007/s00210-021-02139-6. 
											 												 doi: 10.1007/s00210-021-02139-6  | 
										
| [39] |  
											  André T, Shiu KK, Kim TW, et al.  Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218. DOI: 10.1056/NEJMoa2017699. 
											 												 doi: 10.1056/NEJMoa2017699  | 
										
| [40] |  
											  林榕生, 吴楚海, 郭颖梅, 等. 特瑞普利单抗联合贝伐珠单抗二线以上治疗MSI-H型转移性结直肠癌的疗效及安全性[J]. 国际肿瘤学杂志, 2022, 49(2): 100-105. DOI: 10.3760/cma.j.cn371439-20210409-00016. 
											 												 doi: 10.3760/cma.j.cn371439-20210409-00016  | 
										
| [41] |  
											  Wang Y, Wei B, Gao J, et al.  Combination of fruquintinib and anti-PD-1 for the treatment of colorectal cancer[J]. J Immunol, 2020, 205(10): 2905-2915. DOI: 10.4049/jimmunol.2000463. 
											 												 doi: 10.4049/jimmunol.2000463 pmid: 33028620  | 
										
| [42] |  
											  Voorneveld PW, Reimers MS, Bastiaannet E, et al.  Statin use after diagnosis of colon cancer and patient survival[J]. Gastroenterology, 2017, 153(2): 470-479.e4. DOI: 10.1053/j.gastro.2017.05.011. 
											 												 doi: S0016-5085(17)35597-X pmid: 28512021  | 
										
| [43] |  
											  Fiore D, Piscopo C, Proto MC, et al.  N6-isopentenyladenosine inhibits colorectal cancer and improves sensitivity to 5-fluorouracil-targeting FBXW7 tumor suppressor[J]. Cancers (Basel), 2019, 11(10): 1456. DOI: 10.3390/cancers11101456. 
											 												 doi: 10.3390/cancers11101456  | 
										
| [1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. | 
| [2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. | 
| [3] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. | 
| [4] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. | 
| [5] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. | 
| [6] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. | 
| [7] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. | 
| [8] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. | 
| [9] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. | 
| [10] | 王昆, 周中新, 臧其威. 血清TGF-β1、VEGF水平对非小细胞肺癌患者单孔胸腔镜根治术后复发的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 198-203. | 
| [11] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. | 
| [12] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. | 
| [13] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛. 铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. | 
| [14] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. | 
| [15] | 严爱婷, 王翠竹, 刘春桂, 鲁小敏. 卡瑞利珠单抗与信迪利单抗治疗晚期非小细胞肺癌的临床疗效及安全性分析[J]. 国际肿瘤学杂志, 2024, 51(3): 137-142. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||
