国际肿瘤学杂志 ›› 2020, Vol. 47 ›› Issue (6): 368-371.doi: 10.3760/cma.j.cn371439-20191202-00038
收稿日期:
2019-12-02
修回日期:
2019-12-26
出版日期:
2020-06-08
发布日期:
2020-07-22
通讯作者:
张百红
E-mail:bhzhang1999@126.com
Zhang Dandan1, Yue Hongyun2, Zhang Baihong1()
Received:
2019-12-02
Revised:
2019-12-26
Online:
2020-06-08
Published:
2020-07-22
Contact:
Zhang Baihong
E-mail:bhzhang1999@126.com
摘要:
肿瘤是进化的产物,靶向肿瘤进化是有希望的肿瘤治疗方法。肿瘤适应性治疗指通过选择适应和共同进化从而阻滞肿瘤进化,其方法是重构人体和肿瘤的血管、免疫、代谢、微生物群和生物钟功能,促进人体与肿瘤作为整体共同进化,从而实现“适应”和“共生”的肿瘤治疗策略。
张丹丹, 岳红云, 张百红. 肿瘤的适应性治疗:靶向肿瘤进化[J]. 国际肿瘤学杂志, 2020, 47(6): 368-371.
Zhang Dandan, Yue Hongyun, Zhang Baihong. Adaptive therapy of human cancers: targeting cancer evolution[J]. Journal of International Oncology, 2020, 47(6): 368-371.
[1] |
Baez-Ortega A, Gori K, Strakova A, et al. Somatic evolution and global expansion of an ancient transmissible cancer lineage[J]. Science, 2019, 365(6452). pii: eaau9923. DOI: 10.1126/science.aau9923.
doi: 10.1126/science.aay3158 pmid: 31371598 |
[2] |
Amirouchene-Angelozzi N, Swanton C, Bardelli A. Tumor evolution as a therapeutic target[J]. Cancer Discov, 2017. DOI: 10.1158/2159-8290.CD-17-0343.
doi: 10.1158/2159-8290.CD-20-0495 pmid: 32611733 |
[3] |
Cui R, Medeiros T, Willemsen D, et al. Relaxed selection limits lifespan by increasing mutation load[J]. Cell, 2019, 178(2):385-399.e20. DOI: 10.1016/j.cell.2019.06.004.
doi: 10.1016/j.cell.2019.06.004 pmid: 31257025 |
[4] |
Bakhoum SF, Landau DA. Cancer evolution: no room for negative selection[J]. Cell, 2017,171(5):987-989. DOI: 10.1016/j.cell.2017.10.039.
doi: 10.1016/j.cell.2017.10.039 pmid: 29149612 |
[5] |
Turajlic S, Sottoriva A, Graham T, et al. Resolving genetic heterogeneity in cancer[J]. Nat Rev Genet, 2019,20(7):404-416. DOI: 10.1038/s41576-019-0114-6.
doi: 10.1038/s41576-019-0114-6 pmid: 30918367 |
[6] |
Ujvari B, Papenfuss AT, Belov K. Transmissible cancers in an evolutionary context[J]. Bioessays, 2016,38(Suppl 1):S14-S23. DOI: 10.1002/bies.201670904.
doi: 10.1002/bies.201670904 |
[7] |
Cannataro VL, Townsend JP. Neutral theory and the somatic evolution of cancer[J]. Mol Biol Evol, 2018,35(6):1308-1315. DOI: 10.1093/molbev/msy079.
doi: 10.1093/molbev/msy079 pmid: 29684198 |
[8] |
Persi E, Wolf YI, Leiserson MDM, et al. Criticality in tumor evolution and clinical outcome[J]. Proc Natl Acad Sci U S A, 2018,115(47):E11101-E11110. DOI: 10.1073/pnas.1807256115.
doi: 10.1073/pnas.1807256115 pmid: 30404913 |
[9] |
Shaked Y. The pro-tumorigenic host response to cancer therapies[J]. Nat Rev Cancer, 2019,19(12):667-685. DOI: 10.1038/s41568-019-0209-6.
doi: 10.1038/s41568-019-0209-6 pmid: 31645711 |
[10] |
Kuczynski EA, Vermeulen PB, Pezzella F, et al. Vessel co-option in cancer[J]. Nat Rev Clin Oncol, 2019,16(8):469-493. DOI: 10.1038/s41571-019-0181-9.
doi: 10.1038/s41571-019-0181-9 pmid: 30816337 |
[11] |
Yamamoto TN, Kishton RJ, Restifo NP. Developing neoantigen-targeted T cell-based treatments for solid tumors[J]. Nat Med, 2019,25(10):1488-1499. DOI: 10.1038/s41591-019-0596-y.
doi: 10.1038/s41591-019-0596-y pmid: 31591590 |
[12] |
Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization[J]. Cell, 2018,175(2):313-326. DOI: 10.1016/j.cell.2018.09.035.
doi: 10.1016/j.cell.2018.09.035 pmid: 30290139 |
[13] |
Li X, Wenes M, Romero P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy[J]. Nat Rev Clin Oncol, 2019,16(7):425-441. DOI: 10.1038/s41571-019-0203-7.
doi: 10.1038/s41571-019-0203-7 pmid: 30914826 |
[14] |
Garrett WS. The gut microbiota and colon cancer[J]. Science, 2019,364(6446):1133-1135. DOI: 10.1126/science.aaw2367.
doi: 10.1126/science.aaw2367 pmid: 31221845 |
[15] |
Villanueva MT. Cancer: reset your circadian clock[J]. Nat Rev Drug Discov, 2018,17(3):166. DOI: 10.1038/nrd.2018.24.
doi: 10.1038/nrd.2018.24 pmid: 29449708 |
[16] |
Madhusoodanan J. News feature: do hosts and their microbes evolve as a unit?[J]. Proc Natl Acad Sci U S A, 2019,116(29):14391-14394. DOI: 10.1073/pnas.1908139116.
doi: 10.1073/pnas.1908139116 pmid: 31311888 |
[17] |
Hohenlohe PA, McCallum HI, Jones ME, et al. Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer[J]. Conserv Genet, 2019,20(1):81-87. DOI: 10.1007/s10592-019-01157-5.
doi: 10.1007/s10592-019-01157-5 pmid: 31551664 |
[18] |
Archetti M, Pienta KJ. Cooperation among cancer cells: applying game theory to cancer[J]. Nat Rev Cancer, 2019,19(2):110-117. DOI: 10.1038/s41568-018-0083-7.
doi: 10.1038/s41568-018-0083-7 pmid: 30470829 |
[19] |
Karlsson J, Valind A, Holmquist Mengelbier L, et al. Four evolutionary trajectories underlie genetic intratumoral variation in childhood cancer[J]. Nat Genet, 2018,50(7):944-950. DOI: 10.1038/s41588-018-0131-y.
doi: 10.1038/s41588-018-0131-y pmid: 29867221 |
[20] |
Kaznatcheev A, Peacock J, Basanta D, et al. Fibroblasts and alectinib switch the evolutionary games played by non-small cell lung cancer[J]. Nat Ecol Evol, 2019,3(3):450-456. DOI: 10.1038/s41559-018-0768-z.
doi: 10.1038/s41559-018-0768-z pmid: 30778184 |
[21] |
Madan E, Pelham CJ, Nagane M, et al. Flower isoforms promote competitive growth in cancer[J]. Nature, 2019,572(7768):260-264. DOI: 10.1038/s41586-019-1429-3.
doi: 10.1038/s41586-019-1429-3 pmid: 31341286 |
[22] |
Janiszewska M, Tabassum DP, Castaño Z, et al. Subclonal cooperation drives metastasis by modulating local and systemic immune microenvironments [J]. Nat Cell Biol, 2019,21(7):879-888. DOI: 10.1038/s41556-019-0346-x.
doi: 10.1038/s41556-019-0346-x pmid: 31263265 |
[23] |
Tonnessen-Murray CA, Frey WD, Rao SG, et al. Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival[J]. J Cell Biol, 2019,218(11):3827-3844. DOI: 10.1083/jcb.201904051.
doi: 10.1083/jcb.201904051 pmid: 31530580 |
[24] |
Frampton D, Schwenzer H, Marino G, et al. Molecular signatures of regression of the canine transmissible venereal tumor[J]. Cancer Cell, 2018, 33(4):620-633.e6. DOI: 10.1016/j.ccell.2018.03.003.
doi: 10.1016/j.ccell.2018.03.003 pmid: 29634949 |
[25] |
Rosenthal R, Cadieux EL, Salgado R, et al. Neoantigen-directed immune escape in lung cancer evolution[J]. Nature, 2019,567(7749):479-485. DOI: 10.1038/s41586-019-1032-7.
doi: 10.1038/s41586-019-1032-7 pmid: 30894752 |
[26] |
Angelova M, Mlecnik B, Vasaturo A, et al. Evolution of metastases in space and time under immune selection[J]. Cell, 2018,175(3):751-765.e16. DOI: 10.1016/j.cell.2018.09.018.
doi: 10.1016/j.cell.2018.09.018 pmid: 30318143 |
[27] |
Riaz N, Havel JJ, Makarov V, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab[J]. Cell, 2017,171(4):934-949.e16. DOI: 10.1016/j.cell.2017.09.028.
doi: 10.1016/j.cell.2017.09.028 pmid: 29033130 |
[28] |
Woolston A, Khan K, Spain G, et al. Genomic and transcriptomic determinants of therapy resistance and immune landscape evolution during anti-EGFR Treatment in colorectal cancer[J]. Cancer Cell, 2019,36(1):35-50.e9. DOI: 10.1016/j.ccell.2019.05.013.
doi: 10.1016/j.ccell.2019.05.013 pmid: 31287991 |
[29] |
Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy[J]. Nat Rev Drug Discov, 2020,19(1):39-56. DOI: 10.1038/s41573-019-0044-1.
doi: 10.1038/s41573-019-0044-1 pmid: 31601994 |
[30] |
Demaria O, Cornen S, Daëron M, et al. Harnessing innate immunity in cancer therapy[J]. Nature, 2019,574(7776):45-56. DOI: 10.1038/s41586-019-1593-5.
doi: 10.1038/s41586-019-1593-5 pmid: 31578484 |
[31] |
Matyunina EA, Emelyanov AV, Kurbatova TV, et al. Evolutionarily novel genes are expressed in transgenic fish tumors and their orthologs are involved in development of progressive traits in humans[J]. Infect Agent Cancer, 2019,14:46. DOI: 10.1186/s13027-019-0262-5.
doi: 10.1186/s13027-019-0262-5 pmid: 31827597 |
[32] |
Makashov AA, Malov SV, Kozlov AP. Oncogenes, tumor suppressor and differentiation genes represent the oldest human geneclasses and evolve concurrently[J]. Sci Rep, 2019,9(1):16410. DOI: 10.1038/s41598-019-52835-w.
doi: 10.1038/s41598-019-52835-w pmid: 31712655 |
[33] |
Auslander N, Wolf YI, Koonin EV. In silico learning of tumor evolution through mutational time series[J]. Proc Natl Acad Sci U S A, 2019,116(19):9501-9510. DOI: 10.1073/pnas.1901695116.
pmid: 31015295 |
[34] |
Ben-David U, Beroukhim R, Golub TR. Genomic evolution of cancer models: perils and opportunities[J]. Nat Rev Cancer, 2019,19(2):97-109. DOI: 10.1038/s41568-018-0095-3.
doi: 10.1038/s41568-018-0095-3 pmid: 30578414 |
[35] |
Montefiori LE, Nobrega MA. Gene therapy for pathologic gene expression[J]. Science, 2019,363(6424):231-232. DOI: 10.1126/science.aaw0635.
doi: 10.1126/science.aaw0635 pmid: 30655431 |
[36] |
Porteus MH. A new class of medicines through DNA editing[J]. N Engl J Med, 2019,380(10):947-959. DOI: 10.1056/NEJMra1800729.
doi: 10.1056/NEJMra1800729 pmid: 30855744 |
[37] |
Miller AM, Shah RH, Pentsova EI, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid[J]. Nature, 2019,565(7741):654-658. DOI: 10.1038/s41586-019-0882-3.
doi: 10.1038/s41586-019-0882-3 pmid: 30675060 |
[38] |
Hutson M. Bringing machine learning to the masses[J]. Science, 2019,365(6452):416-417. DOI: 10.1126/science.365.6452.416.
doi: 10.1126/science.365.6452.416 pmid: 31371586 |
[39] |
Eraslan G Avsec Gagneur J, et al. Deep learning: new computational modelling techniques for genomics[J]. Nat Rev Genet, 2019,20(7):389-403. DOI: 10.1038/s41576-019-0122-6.
doi: 10.1038/s41576-019-0122-6 pmid: 30971806 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||