[1] Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64(1): 9-29. DOI: 10.3322/caac.
[2] Chung C, Reilly S. Trametinib: a novel signal transduction inhibitor for the treatment of metastatic cutaneous melanoma[J]. Am J Health Syst Pharm, 2015, 72(2): 101-110. DOI: 10.2146/ajhp140045.
[3] Luke JJ, Hodi FS. Ipilimumab, vemurafenib, dabrafenib, and trametinib: synergistic competitors in the clinical management of BRAF mutant malignant melanoma[J]. Oncologist, 2013, 18(6): 717-725. DOI: 10.1634/theoncologist.
[4] Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system[J]. Nanomedicine (Lond), 2012, 7(8): 1253-1271. DOI: 10.2217/nnm.
[5] Kumari P, Ghosh B, Biswas S. Nanocarriers for cancertargeted drug delivery[J]. J Drug Target, 2016 , 24(3): 179-191. DOI: 10.3109/1061186X.
[6] AhlgrimmSiess V, Laimer M, Arzberger E, et al. New diagnostics for melanoma detection: from artificial intelligence to RNA microarrays[J]. Future Oncol, 2012, 8(7): 819-827. DOI: 10.2217/fon.
[7] Flaherty KT. Targeting metastatic melanoma[J]. An Rev Med, 2012, 63: 171-183. DOI: 10.1146/annurev-med-050410-105655.
[8] Ong FS, Das K, Wang J, et al. Personalized medicine and pharmacogenetic biomarkers: progress in molecular oncology testing[J]. Expert Rev Mol Diagn, 2012, 12(6): 593-602. DOI: 10.1586/erm.12.59.
[9] Huber F, Lang HP, Backmann N, et al. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays[J]. Nat Nanotechnol, 2013, 8(2): 125-129. DOI: 10.1038/nnano.2012.263.
[10] Kim MJ, Lee JY, Nehrbass U, et al. Detection of melanoma using antibodyconjugated quantum dots in a coculture model for highthroughput screening system[J]. Analyst, 2012, 137(6): 1440-1445. DOI: 10.1039/c2an16013g.
[11] Li Z, Huang P, Lin J, et al. Arginineglycineaspartic acidconjugated dendrimermodified quantum dots for targeting and imaging melanoma[J]. J Nanosci Nanotechnol, 2010, 10(8): 48594867. DOI: 10.1166/jnn.2010.2217.
[12] Vannucci L, Falvo E, Failla CM, et al. In vivo targeting of cutaneous melanoma using an melanoma stimulating hormoneengineered human protein cage with fluorophore and magnetic resonance imaging tracers[J]. J Biomed Nanotechnol, 2015, 11(1): 8192. DOI: 10.1186/1479587612S1P6.
[13] Bei D, Meng J, Youan BB. Engineering nanomedicines for improved melanoma therapy: progress and promises[J]. Nanomedicine (Lond), 2010, 5(9): 1385-1399. DOI: 10.2217/nnm.
[14] Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs[J]. Annu Rev Med, 2012, 63: 185198. DOI: 10.1146/annurevmed040210162544.
[15] Christian DA, Cai S, Bowen DM, et al. Polymersome carriers: from selfassembly to siRNA and protein therapeutics[J]. Eur J Pharm Biopharm, 2009, 71(3): 463-474. DOI: 10.1016/j.ejpb.2008.09.025.
[16] Bonifácio BV, Silva PB, Ramos MA, et al. Nanotechnologybased drug delivery systems and herbal medicines: a review[J]. Int J Nanomedicine, 2014, 9: 1-15. DOI: 10.2147/IJN.S52634.
[17] Pegoraro C, Cecchin D, Gracia LS, et al. Enhanced drug delivery to melanoma cells using PMPCPDPA polymersomes[J]. Cancer Lett, 2013, 334(2): 328337. DOI: 10.1016/j.canlet.2013.02.007.
[18] Anilkumar P, Lu F, Cao L, et al. Fullerenes for applications in biology and medicine[J]. Curr Med Chem, 2011, 18(14): 2045-2059. DOI: 10.2174/092986711795656225.
[19] Chaudhuri P, Soni S, Sengupta S. Singlewalled carbon nanotubeconjugated chemotherapy exhibits increased therapeutic index in melanoma[J]. Nanotechnology, 2010, 21(2): 025102. DOI: 10.1088/09574484/21/2/025102.
[20] Wang Y, Mo L, Wei W, et al. Efficacy and safety of dendrimer nanoparticles with coexpression of tumor necrosis factoralpha and herpes simplex virus thymidine kinase in gene radiotherapy of the human uveal melanoma OCM1 cell line[J]. Int J Nanomedicine, 2013, 8: 38053816. DOI: 10.2147/IJN.S48950.
[21] Siu KS, Chen D, Zheng X, et al. Noncovalently functionalized singlewalled carbon nanotube for topical siRNA delivery into melanoma[J]. Biomaterials, 2014, 35(10): 3435-3442. DOI: 10.1016/j.biomaterials.2013.12.079.
[22] Scodeller P, Catalano PN, Salguero N, et al. Hyaluronan degrading silica nanoparticles for skin cancer therapy[J]. Nanoscale, 2013, 5(20): 9690-9698. DOI: 10.1016/j.biomaterials.2013.12.079.
[23] Choi BB, Kim MS, Kim UK, et al. Targeting NEU protein in melanoma cells with nonthermal atmospheric pressure plasma and gold nanoparticles[J]. J Biomed Nanotechnol, 2015, 11(5): 900-905. DOI: 10.1166/jbn.2015.1999.
[24] Yao H, Ng SS, Huo LF, et al. Effective melanoma immunotherapy with interleukin2 delivered by a novel polymeric nanoparticle[J]. Mol Cancer Ther, 2011, 10(6): 1082-1092. DOI: 10.1158/1535-7163.MCT-10-0717.
[25] Tan S, Sasada T, Bershteyn A, et al. Combinational delivery of lipidenveloped polymeric nanoparticles carrying different peptides for antitumor immunotherapy[J]. Nanomedicine (Lond), 2014, 9(5): 635-647. DOI: 10.2217/NNM.13.67
[26] Camerin M, Magaraggia M, Soncin M, et al. The in vivo efficacy of phthalocyanine nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma[J]. Eur J Cancer, 2010, 46(10): 19101918. DOI: 10.1016/j.ejca.2010.02.037.
[27] Idris NM, Gnanasammandhan MK, Zhang J, et al. In vivo photodynamic therapy using upconversion nanoparticles as remotecontrolled nanotransducers[J]. Nat Med, 2012, 18(10): 1580-1585. DOI: 10.1038/nm.2933.
[28] LeonFerre RA, Markovic SN. Nabpaclitaxel in patients with metastatic melanoma[J]. Expert Rev Anticancer Ther, 2015, 15(12): 1371-1377. DOI: 10.1586/14737140.2015.1110024. |