[1] |
Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(9): 557-588. DOI: 10.1038/s41575-020-0310-z.
pmid: 32606456
|
[2] |
Khan SA, Tavolari S, Brandi G. Cholangiocarcinoma: epidemiology and risk factors[J]. Liver Int, 2019, 39 Suppl 1: 19-31. DOI: 10.1111/liv.14095.
pmid: 30851228
|
[3] |
Torre LA, Siegel RL, Islami F, et al. Worldwide burden of and trends in mortality from gallbladder and other biliary tract cancers[J]. Clin Gastroenterol Hepatol, 2018, 16(3): 427-437. DOI: 10.1016/j.cgh.2017.08.017.
|
[4] |
Razumilava N, Gores GJ. Cholangiocarcinoma[J]. Lancet, 2014, 383(9935): 2168-2179. DOI: 10.1016/s0140-6736(13)61903-0.
pmid: 24581682
|
[5] |
Rizvi S, Khan SA, Hallemeier CL, et al. Cholangiocarcinoma—evolving concepts and therapeutic strategies[J]. Nat Rev Clin Oncol, 2018, 15(2): 95-111. DOI: 10.1038/nrclinonc.2017.157.
|
[6] |
El-diwany R, Pawlik TM, Ejaz A. Intrahepatic cholangiocarcinoma[J]. Surg Oncol Clin N Am, 2019, 28(4): 587-599. DOI: 10.1016/j.soc.2019.06.002.
pmid: 31472907
|
[7] |
Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer[J]. N Engl J Med, 2010, 362(14): 1273-1281. DOI: 10.1056/NEJMoa0908721.
|
[8] |
Lowery MA, Ptashkin R, Jordan E, et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: potential targets for intervention[J]. Clin Cancer Res, 2018, 24(17): 4154-4161. DOI: 10.1158/1078-0432.CCR-18-0078.
pmid: 29848569
|
[9] |
Yoshikawa D, Ojima H, Iwasaki M, et al. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma[J]. Br J Cancer, 2008, 98(2): 418-425. DOI: 10.1038/sj.bjc.6604129.
|
[10] |
Sha M, Jeong S, Chen XS, et al. Expression of VEGFR-3 in intrahepatic cholangiocarcinoma correlates with unfavorable prognosis through lymphangiogenesis[J]. Int J Biol Sci, 2018, 14(10): 1333-1342. DOI: 10.7150/ijbs.26045.
pmid: 30123080
|
[11] |
Sang H, Li T, Li H, et al. Gab1 regulates proliferation and migration through the PI3K/Akt signaling pathway in intrahepatic cholangiocarcinoma[J]. Tumour Biol, 2015, 36(11): 8367-8377. DOI: 10.1007/s13277-015-3590-0.
|
[12] |
Perez-Moreno P, Brambilla E, Thomas R, et al. Squamous cell carcinoma of the lung: molecular subtypes and therapeutic opportunities[J]. Clin Cancer Res, 2012, 18(9): 2443-2451. DOI: 10. 1158/1078-0432.CCR-11-2370.
pmid: 22407829
|
[13] |
Brooks AN, Kilgour E, Smith PD. Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer[J]. Clin Cancer Res, 2012, 18(7): 1855-1862. DOI: 10.1158/1078-0432.CCR-11-0699.
pmid: 22388515
|
[14] |
Peng H, Zhang Q, Li J, et al. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma[J]. Oncotarget, 2016, 7(13): 17220-17229. DOI: 10.18632/oncotarget.7948.
pmid: 26967384
|
[15] |
Peng M, Li H, Cao H, et al. Dual FGFR and VEGFR inhibition synergistically restrain hexokinase 2-dependent lymphangiogenesis and immune escape in intrahepatic cholangiocarcinoma[J]. J Gastroenterol, 2023, 58(9): 908-924. DOI: 10.1007/s00535-023-02012-8.
pmid: 37433897
|
[16] |
Sia D, Losic B, Moeini A, et al. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma[J]. Nat Commun, 2015, 6: 6087. DOI: 10.1038/ncomms7087.
pmid: 25608663
|
[17] |
Arai Y, Totoki Y, Hosoda F, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma[J]. Hepatology, 2014, 59(4): 1427-1434. DOI: 10.1002/hep.26890.
pmid: 24122810
|
[18] |
Xu J, Bai Y, Sun H, et al. A single-arm, multicenter, open-label phase 2 trial of surufatinib in patients with unresectable or metastatic biliary tract cancer[J]. Cancer, 2021, 127(21): 3975-3984. DOI: 10.1002/cncr.33803.
pmid: 34355801
|
[19] |
Demols A, Borbath I, Van den Eynde M, et al. Regorafenib after failure of gemcitabine and platinum-based chemotherapy for locally advanced/metastatic biliary tumors: REACHIN, a randomized, double-blind, phase Ⅱ trial[J]. Ann Oncol, 2020, 31(9): 1169-1177. DOI: 10.1016/j.annonc.2020.05.018.
pmid: 32464280
|
[20] |
Bengala C, Bertolini F, Malavasi N, et al. Sorafenib in patients with advanced biliary tract carcinoma: a phase Ⅱ trial[J]. Br J Cancer, 2010, 102(1): 68-72. DOI: 10.1038/sj.bjc.6605458.
|
[21] |
Yi JH, Thongprasert S, Lee J, et al. A phase Ⅱ study of sunitinib as a second-line treatment in advanced biliary tract carcinoma: a multicentre, multinational study[J]. Eur J Cancer, 2011, 48(2): 196-201. DOI: 10.1016/j.ejca.2011.11.017.
|
[22] |
Goyal L, Meric-Bernstam F, Hollebecque A, et al. Futibatinib for FGFR2-rearranged intrahepatic cholangiocarcinoma[J]. N Engl J Med, 2023, 388(3): 228-239. DOI: 10.1056/NEJMoa2206834.
|
[23] |
Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study[J]. Lancet Oncol, 2020, 21(5): 671-684. DOI: 10.1016/S1470-2045(20)30109-1.
pmid: 32203698
|
[24] |
Mazzaferro V, El-Rayes BF, Droz Dit Busset M, et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma[J]. Br J Cancer, 2019, 120(2): 165-171. DOI: 10.1038/s41416-018-0334-0.
|
[25] |
Pant S, Schuler MH, Iyer G, et al. Efficacy and safety of erdafitinib in adults with cholangiocarcinoma (CCA) with prespecified fibroblast growth factor receptor alterations (FGFRalt) in the phase 2 open-label, single-arm RAGNAR trial: expansion cohort results[J]. J Clin Oncol, 2023, 41(4_suppl): 610. DOI: 10.1200/JCO.2023.41.4_suppl.610.
|
[26] |
Javle M, Roychowdhury S, Kelley RK, et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study[J]. Lancet Gastroenterol Hepatol, 2021, 6(10): 803-815. DOI: 10.1016/S2468-1253(21)00196-5.
|