[1] |
段帅, 郭晨明, 李慧芳, 等. 1990—2019年中国女性乳腺癌发病死亡趋势及年龄-时期-队列模型分析[J]. 国际肿瘤学杂志, 2022, 49(10): 586-591. DOI: 10.3760/cma.j.cn371439-20220726-00116.
|
[2] |
宋德领, 张玉姣, 朱月香, 等. 动态对比增强MRI影像组学特征鉴别乳腺良恶性病变的价值[J]. 实用放射学杂志, 2021, 37(11): 1810-1813, 1846. DOI: 10.3969/j.issn.1002-1671.2021.11.015.
|
[3] |
Zhou J, Zhang Y, Chang KT, et al. Diagnosis of benign and malignant breast lesions on DCE-MRI by using radiomics and deep learning with consideration of peritumor tissue[J]. J Magn Reson Imaging, 2020, 51(3): 798-809. DOI: 10.1002/jmri.26981.
pmid: 31675151
|
[4] |
Granzier RWY, Verbakel NMH, Ibrahim A, et al. MRI-based radiomics in breast cancer: feature robustness with respect to inter-observer segmentation variability[J]. Sci Rep, 2020, 10(1): 14163. DOI: 10.1038/s41598-020-70940-z.
pmid: 32843663
|
[5] |
徐兵河, 江泽飞, 胡夕春. 中国晚期乳腺癌临床诊疗专家共识2016[J]. 中华医学杂志, 2016, 96(22): 1719-1727. DOI: 10.3760/cma.j.issn.0376-2491.2016.22.002
|
[6] |
中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013.
|
[7] |
Zhao YF, Chen Z, Zhang Y, et al. Diagnosis of breast cancer using radiomics models built based on dynamic contrast enhanced MRI combined with mammography[J]. Front Oncol, 2021, 11: 774248. DOI: 10.3389/fonc.2021.774248.
|
[8] |
张书海, 王小雷, 朱芸, 等. 多模态影像组学在鉴别乳腺良恶性病变中的应用研究[J]. 临床放射学杂志, 2021, 40(11): 2098-2104.
|
[9] |
Huang Y, Wei L, Hu Y, et al. Multi-parametric MRI-based radiomics models for predicting molecular subtype and androgen receptor expression in breast cancer[J]. Front Oncol, 2021, 11: 706733. DOI: 10.3389/fonc.2021.706733.
|
[10] |
Daimiel Naranjo I, Gibbs P, Reiner JS, et al. Radiomics and machine learning with multiparametric breast MRI for improved diagnostic accuracy in breast cancer diagnosis[J]. Diagnostics (Basel), 2021, 11(6): 919. DOI: 10.3390/diagnostics11060919.
|
[11] |
Lin F, Wang Z, Zhang K, et al. Contrast-enhanced spectral mammography-based radiomics nomogram for identifying benign and malignant breast lesions of Sub-1 cm[J]. Front Oncol, 2020, 10: 573630. DOI: 10.3389/fonc.2020.573630.
|
[12] |
Chen HL, Zhou JQ, Chen Q, et al. Comparison of the sensitivity of mammography, ultrasound, magnetic resonance imaging and combinations of these imaging modalities for the detection of small (≤2 cm) breast cancer[J]. Medicine (Baltimore), 2021, 100(26): e26531. DOI: 10.1097/MD.0000000000026531.
|
[13] |
Niu S, Jiang W, Zhao N, et al. Intra- and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI[J]. J Cancer Res Clin Oncol, 2022, 148(1): 97-106. DOI: 10.1007/s00432-021-03822-0.
|
[14] |
Gillies RJ, Schabath MB. Radiomics improves cancer screening and early detection[J]. Cancer Epidemiol Biomarkers Prev, 2020, 29(12): 2556-2567. DOI: 10.1158/1055-9965.EPI-20-0075.
|
[15] |
Jiang M, Li CL, Luo XM, et al. An MRI-based radiomics approach to improve breast cancer histological grading[J]. Acad Radiol, 2023, 30(9): 1794-1804. DOI: 10.1016/j.acra.2022.12.014.
pmid: 36609032
|
[16] |
Li X, Jiang N, Zhang C, et al. Value of conventional magnetic resonance imaging texture analysis in the differential diagnosis of benign and borderline/malignant phyllodes tumors of the breast[J]. Cancer Imaging, 2021, 21(1): 29. DOI: 10.1186/s40644-021-00398-3.
pmid: 33712070
|
[17] |
Conti A, Duggento A, Indovina I, et al. Radiomics in breast cancer classification and prediction[J]. Semin Cancer Biol, 2021, 72: 238-250. DOI: 10.1016/j.semcancer.2020.04.002.
pmid: 32371013
|
[18] |
Langman EL, Kuzmiak CM, Brader R, et al. Breast cancer in young women: imaging and clinical course[J]. Breast J, 2021, 27(8): 657-663. DOI: 10.1111/tbj.14261.
|
[19] |
尤超, 彭卫军, 顾雅佳, 等. 乳腺X线摄影及MRI结合临床特征对乳腺高危病变诊断价值[J]. 中华放射学杂志, 2020, 54(3): 203-208. DOI: 10.3760/cma.j.issn.1005-1201.2020.03.006.
|
[20] |
Tagliafico AS, Piana M, Schenone D, et al. Overview of radiomics in breast cancer diagnosis and prognostication[J]. Breast, 2020, 49: 74-80. DOI: 10.1016/j.breast.2019.10.018.
pmid: 31739125
|