国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (6): 373-376.doi: 10.3760/cma.j.cn371439-20230410-00074
收稿日期:
2023-04-10
修回日期:
2023-04-20
出版日期:
2023-06-08
发布日期:
2023-07-11
通讯作者:
孙鹏飞,Email:Received:
2023-04-10
Revised:
2023-04-20
Online:
2023-06-08
Published:
2023-07-11
Contact:
Sun Pengfei,Email:摘要:
宫颈癌的发生、发展受到肠道菌群影响,宫颈癌患者与健康女性肠道菌群不同,对肠道菌群进行检测、评价有助于宫颈癌的诊断、免疫治疗、放化疗疗效评估及预后预测。调节肠道菌群对于增强抗肿瘤治疗应答、提高患者生命质量、改善预后具有重要的临床价值。
吕璐, 孙鹏飞. 肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376.
Lyu Lu, Sun Pengfei. Gut flora and cervical cancer[J]. Journal of International Oncology, 2023, 50(6): 373-376.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease[J]. Clin J Gastroenterol, 2018, 11(1): 1-10. DOI: 10.1007/s12328-017-0813-5.
doi: 10.1007/s12328-017-0813-5 pmid: 29285689 |
[3] |
Lee CJ, Sears CL, Maruthur N. Gut microbiome and its role in obesity and insulin resistance[J]. Ann N Y Acad Sci, 2020, 1461(1): 37-52. DOI: 10.1111/nyas.14107.
doi: 10.1111/nyas.14107 |
[4] |
Singer-Englar T, Barlow G, Mathur R. Obesity, diabetes, and the gut microbiome: an updated review[J]. Expert Rev Gastroenterol Hepatol, 2019, 13(1): 3-15. DOI: 10.1080/17474124.2019.1543023.
doi: 10.1080/17474124.2019.1543023 |
[5] |
Franzosa EA, Sirota-Madi A, Avila-Pacheco J, et al. Author correction: gut microbiome structure and metabolic activity in inflammatory bowel disease[J]. Nat Microbiol, 2019, 4(5): 898. DOI: 10.1038/s41564-019-0442-5.
doi: 10.1038/s41564-019-0442-5 pmid: 30971771 |
[6] |
Pimentel M, Lembo A. Microbiome and its role in irritable bowel syndrome[J]. Dig Dis Sci, 2020, 65(3): 829-839. DOI: 10.1007/s10620-020-06109-5.
doi: 10.1007/s10620-020-06109-5 |
[7] |
Sims TT, Colbert LE, Zheng J, et al. Gut microbial diversity and genus-level differences identified in cervical cancer patients versus healthy controls[J]. Gynecol Oncol, 2019, 155(2): 237-244. DOI: 10.1016/j.ygyno.2019.09.002.
doi: S0090-8258(19)31489-1 pmid: 31500892 |
[8] |
Kang GU, Jung DR, Lee YH, et al. Dynamics of fecal microbiota with and without invasive cervical cancer and its application in early diagnosis[J]. Cancers (Basel), 2020, 12(12): 3800. DOI: 10.3390/cancers12123800.
doi: 10.3390/cancers12123800 |
[9] |
Wang Z, Wang Q, Zhao J, et al. Altered diversity and composition of the gut microbiome in patients with cervical cancer[J]. AMB Express, 2019, 9(1): 40. DOI: 10.1186/s13568-019-0763-z.
doi: 10.1186/s13568-019-0763-z pmid: 30904962 |
[10] |
You L, Cui H, Zhao F, et al. Inhibition of HMGB1/RAGE axis suppressed the lipopolysaccharide (LPS)-induced vicious transformation of cervical epithelial cells[J]. Bioengineered, 2021, 12(1): 4995-5003. DOI: 10.1080/21655979.2021.1957750.
doi: 10.1080/21655979.2021.1957750 pmid: 34369271 |
[11] |
Karpinets TV, Solley TN, Mikkelson MD, et al. Effect of antibiotics on gut and vaginal microbiomes associated with cervical cancer development in mice[J]. Cancer Prev Res (Phila), 2020, 13(12): 997-1006. DOI: 10.1158/1940-6207.CAPR-20-0103.
doi: 10.1158/1940-6207.CAPR-20-0103 |
[12] |
Colombo N, Dubot C, Lorusso D, et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer[J]. N Engl J Med, 2021, 385(20): 1856-1867. DOI: 10.1056/NEJMoa2112435.
doi: 10.1056/NEJMoa2112435 |
[13] |
Tewari KS, Monk BJ, Vergote I, et al. Survival with cemiplimab in recurrent cervical cancer[J]. N Engl J Med, 2022, 386(6): 544-555. DOI: 10.1056/NEJMoa2112187.
doi: 10.1056/NEJMoa2112187 |
[14] |
Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients[J]. Science, 2021, 371(6529): 602-609. DOI: 10.1126/science.abb5920.
doi: 10.1126/science.abb5920 pmid: 33303685 |
[15] |
Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients[J]. Science, 2021, 371(6529): 595-602. DOI: 10.1126/science.abf3363.
doi: 10.1126/science.abf3363 pmid: 33542131 |
[16] |
Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients[J]. Science, 2018, 359(6371): 104-108. DOI: 10.1126/science.aao3290.
doi: 10.1126/science.aao3290 pmid: 29302014 |
[17] |
Sims TT, El Alam MB, Karpinets TV, et al. Gut microbiome diversity is an independent predictor of survival in cervical cancer patients receiving chemoradiation[J]. Commun Biol, 2021, 4(1): 237. DOI: 10.1038/s42003-021-01741-x.
doi: 10.1038/s42003-021-01741-x pmid: 33619320 |
[18] |
Che Y, Yang Y, Suo J, et al. Induction of systemic immune responses and reversion of immunosuppression in the tumor microenvironment by a therapeutic vaccine for cervical cancer[J]. Cancer Immunol Immunother, 2020, 69(12): 2651-2664. DOI: 10.1007/s00262-020-02651-3.
doi: 10.1007/s00262-020-02651-3 |
[19] |
Che Y, Fu S, Wang H, et al. Correlation of the gut microbiota and antitumor immune responses induced by a human papillomavirus therapeutic vaccine[J]. ACS Infect Dis, 2022, 8(12): 2494-2504. DOI: 10.1021/acsinfecdis.2c00305.
doi: 10.1021/acsinfecdis.2c00305 pmid: 36342280 |
[20] |
Abdolalipour E, Mahooti M, Gorji A, et al. Synergistic therapeutic effects of probiotic Lactobacillus casei TD-2 consumption on GM-CSF-induced immune responses in a murine model of cervical cancer[J]. Nutr Cancer, 2022, 74(1): 372-382. DOI: 10.1080/01635581.2020.1865419.
doi: 10.1080/01635581.2020.1865419 |
[21] |
Abdolalipour E, Mahooti M, Salehzadeh A, et al. Evaluation of the antitumor immune responses of probiotic Bifidobacterium bifidum in human papillomavirus-induced tumor model[J]. Microb Pathog, 2020, 145: 104207. DOI: 10.1016/j.micpath.2020.104207.
doi: 10.1016/j.micpath.2020.104207 |
[22] |
Fernandes A, Oliveira A, Soares R, et al. The effects of ionizing radiation on gut microbiota, a systematic review[J]. Nutrients, 2021, 13(9): 3025. DOI: 10.3390/nu13093025.
doi: 10.3390/nu13093025 |
[23] |
Liu J, Liu C, Yue J. Radiotherapy and the gut microbiome: facts and fiction[J]. Radiat Oncol, 2021, 16(1): 9. DOI: 10.1186/s13014-020-01735-9.
doi: 10.1186/s13014-020-01735-9 pmid: 33436010 |
[24] |
Sims TT, Colbert LE, Karpinets T, et al. Compositional and temporal changes of the gut microbiome in women with cervical cancer undergoing chemoradiation: does it predict response?[J]. Gynecol Oncol, 2020, 159, SUPPLEMENT 1: 35-36. DOI: 10.1016/j.ygyno.2020.06.074.
doi: 10.1016/j.ygyno.2020.06.074 |
[25] |
Uribe-Herranz M, Rafail S, Beghi S, et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response[J]. J Clin Invest, 2020, 130(1): 466-479. DOI: 10.1172/JCI124332.
doi: 10.1172/JCI124332 pmid: 31815742 |
[26] |
Cui M, Xiao H, Luo D, et al. Circadian rhythm shapes the gut microbiota affecting host radiosensitivity[J]. Int J Mol Sci, 2016, 17(11): 1786. DOI: 10.3390/ijms17111786.
doi: 10.3390/ijms17111786 |
[27] |
Demers M, Dagnault A, Desjardins J. A randomized double-blind controlled trial: impact of probiotics on diarrhea in patients treated with pelvic radiation[J]. Clin Nutr, 2014, 33(5): 761-767. DOI: 10.1016/j.clnu.2013.10.015.
doi: 10.1016/j.clnu.2013.10.015 pmid: 24200199 |
[28] |
Jian Y, Zhang D, Liu M, et al. The impact of gut microbiota on radiation-induced enteritis[J]. Front Cell Infect Microbiol, 2021, 11: 586392. DOI: 10.3389/fcimb.2021.586392.
doi: 10.3389/fcimb.2021.586392 |
[29] |
Wang Z, Wang Q, Wang X, et al. Gut microbial dysbiosis is associated with development and progression of radiation enteritis during pelvic radiotherapy[J]. J Cell Mol Med, 2019, 23(5): 3747-3756. DOI: 10.1111/jcmm.14289.
doi: 10.1111/jcmm.14289 pmid: 30908851 |
[30] |
Mitra A, Grossman Biegert GW, Delgado AY, et al. Microbial diversity and composition is associated with patient-reported toxicity during chemoradiation therapy for cervical cancer[J]. Int J Radiat Oncol Biol Phys, 2020, 107(1): 163-171. DOI: 10.1016/j.ijrobp.2019.12.040.
doi: 10.1016/j.ijrobp.2019.12.040 |
[31] |
Bai J, Barandouzi ZA, Rowcliffe C, et al. Gut microbiome and its associations with acute and chronic gastrointestinal toxicities in cancer patients with pelvic radiation therapy: a systematic review[J]. Front Oncol, 2021, 11: 745262. DOI: 10.3389/fonc.2021.745262.
doi: 10.3389/fonc.2021.745262 |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[4] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[5] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[6] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
[7] | 钱晓涛, 石子宜, 胡格. Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
[8] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英. 免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
[9] | 过慈良, 江春平, 吴俊华. 肠道菌群与肿瘤免疫治疗[J]. 国际肿瘤学杂志, 2023, 50(7): 432-436. |
[10] | 崔腾璐, 孙鹏飞. 鼻咽低级别乳头状腺癌综合治疗1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(6): 382-384. |
[11] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 同步放化疗期间应用聚乙二醇化重组人粒细胞刺激因子中国专家共识(2023版)[J]. 国际肿瘤学杂志, 2023, 50(4): 193-201. |
[12] | 石小琪, 汪红艳. 肠道菌群与放射性肠炎的相互作用及研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 244-247. |
[13] | 赵永瑞, 高莹, 陈怡东, 徐建堃. 基于直线加速器的分次立体定向放疗对小体积脑转移瘤的有效性及安全性[J]. 国际肿瘤学杂志, 2023, 50(3): 138-143. |
[14] | 黄华玉, 龚虹云, 宋启斌. 胸部放疗联合免疫治疗时代肺炎发生的影响因素[J]. 国际肿瘤学杂志, 2023, 50(2): 102-106. |
[15] | 张雨潇, 张连生, 李莉娟. 新型免疫检查点TIGIT在多发性骨髓瘤免疫治疗中的研究现状与应用前景[J]. 国际肿瘤学杂志, 2023, 50(2): 122-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||