国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (12): 734-738.doi: 10.3760/cma.j.cn371439-20230606-00138
收稿日期:
2023-06-06
修回日期:
2023-07-26
出版日期:
2023-12-08
发布日期:
2024-01-16
通讯作者:
张百红
E-mail:bhzhang1999@126.com
基金资助:
Yue Hongyun1, Zhang Baihong2()
Received:
2023-06-06
Revised:
2023-07-26
Online:
2023-12-08
Published:
2024-01-16
Contact:
Zhang Baihong
E-mail:bhzhang1999@126.com
Supported by:
摘要:
肿瘤细胞有衰老反应,衰老的肿瘤细胞具有抑瘤和促瘤的作用。肿瘤的衰老治疗包括诱导肿瘤细胞衰老、清除衰老肿瘤细胞和调节衰老相关表型,但其疗效和不良反应尚需深入研究。检测肿瘤患者肿瘤衰老细胞及其外周血中衰老相关蛋白和代谢物有助于评估衰老治疗的疗效并指导未来的临床试验。
岳红云, 张百红. 肿瘤的衰老治疗[J]. 国际肿瘤学杂志, 2023, 50(12): 734-738.
Yue Hongyun, Zhang Baihong. Senotherapies in cancers[J]. Journal of International Oncology, 2023, 50(12): 734-738.
[1] |
Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46. DOI: 10.1158/2159-8290.CD-21-1059.
pmid: 35022204 |
[2] | Di Micco R, Krizhanovsky V, Baker D, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 75-95. DOI: 10.1038/s41580-020-00314-w. |
[3] |
He S, Sharpless NE. Senescence in health and disease[J]. Cell, 2017, 169(6): 1000-1011. DOI: 10.1016/j.cell.2017.05.015.
pmid: 28575665 |
[4] | Schmitt CA, Wang B, Demaria M. Senescence and cancer-role and therapeutic opportunities[J]. Nat Rev Clin Oncol, 2022, 19(10): 619-636. DOI: 10.1038/s41571-022-00668-4. |
[5] | Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorige-nesis[J]. Nature, 2005, 436(7051): 725-730. DOI: 10.1038/nature03918. |
[6] | Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi[J]. Nature, 2005, 436(7051): 720-724. DOI: 10.1038/nature03890. |
[7] |
Lerma Clavero A, Boqvist PL, Ingelshed K, et al. MDM2 inhibitors, nutlin-3a and navtemadelin, retain efficacy in human and mouse cancer cells cultured in hypoxia[J]. Sci Rep, 2023, 13(1): 4583. DOI: 10.1038/s41598-023-31484-0.
pmid: 36941277 |
[8] | Uusküla-Reimand L, Wilson MD. Untangling the roles of TOP2A and TOP2B in transcription and cancer[J]. Sci Adv, 2022, 8(44): eadd4920. DOI: 10.1126/sciadv.add4920. |
[9] |
Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy[J]. Nat Rev Cancer, 2021, 21(1): 37-50. DOI: 10.1038/s41568-020-00308-y.
pmid: 33128031 |
[10] |
Faheem MM, Seligson ND, Ahmad SM, et al. Convergence of therapy-induced senescence (TIS) and EMT in multistep carcinogenesis: current opinions and emerging perspectives[J]. Cell Death Discov, 2020, 6: 51. DOI: 10.1038/s41420-020-0286-z.
pmid: 32566256 |
[11] | Fassl A, Geng Y, Sicinski P. CDK4 and CDK6 kinases: from basic science to cancer therapy[J]. Science, 2022, 375(6577): eabc1495. DOI: 10.1126/science.abc1495. |
[12] |
Bousset L, Gil J. Targeting senescence as an anticancer therapy[J]. Mol Oncol, 2022, 16(21): 3855-3880. DOI: 10.1002/1878-0261.13312.
pmid: 36065138 |
[13] | Michalak EM, Burr ML, Bannister AJ, et al. The roles of DNA, RNA and histone methylation in ageing and cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 573-589. DOI: 10.1038/s41580-019-0143-1. |
[14] | Feinberg AP, Levchenko A. Epigenetics as a mediator of plasticity in cancer[J]. Science, 2023, 379(6632): eaaw3835. DOI: 10.1126/science.aaw3835. |
[15] |
López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: an expanding universe[J]. Cell, 2023, 186(2): 243-278. DOI: 10.1016/j.cell.2022.11.001.
pmid: 36599349 |
[16] |
Ruscetti M, Morris JP 4th, Mezzadra R, et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer[J]. Cell, 2020, 181(2): 424-441.e21. DOI: 10.1016/j.cell.2020.03.008.
pmid: 32234521 |
[17] | Marin I, Boix O, Garcia-Garijo A, et al. Cellular senescence is immunogenic and promotes antitumor immunity[J]. Cancer Discov, 2023, 13(2): 410-431. DOI: 10.1158/2159-8290.CD-22-0523. |
[18] |
Baar MP, Brandt RMC, Putavet DA, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging[J]. Cell, 2017, 169(1): 132-147.e16. DOI: 10.1016/j.cell.2017.02.031.
pmid: 28340339 |
[19] |
Wang L, Lankhorst L, Bernards R. Exploiting senescence for the treatment of cancer[J]. Nat Rev Cancer, 2022, 22(6): 340-355. DOI: 10.1038/s41568-022-00450-9.
pmid: 35241831 |
[20] |
Gasek NS, Kuchel GA, Kirkland JL, et al. Strategies for targeting senescent cells in human disease[J]. Nat Aging, 2021, 1(10): 870-879. DOI: 10.1038/s43587-021-00121-8.
pmid: 34841261 |
[21] | Martin N, Popgeorgiev N, Ichim G, et al. BCL-2 proteins in senescence: beyond a simple target for senolysis?[J]. Nat Rev Mol Cell Biol, 2023, 24(8): 517-518. DOI: 10.1038/s41580-023-00594-y. |
[22] | Fan DNY, Schmitt CA. A cFLIP-flop switch for senolysis[J]. Nat Cancer, 2022, 3(11): 1279-1281. DOI: 10.1038/s43018-022-00455-1. |
[23] |
Troiani M, Colucci M, D'Ambrosio M, et al. Single-cell transcriptomics identifies Mcl-1 as a target for senolytic therapy in cancer[J]. Nat Commun, 2022, 13(1): 2177. DOI: 10.1038/s41467-022-29824-1.
pmid: 35449130 |
[24] |
Crunkhorn S. Driving CARs to clear senescent cells[J]. Nat Rev Drug Discov, 2020, 19(8): 509. DOI: 10.1038/d41573-020-00117-w.
pmid: 32581354 |
[25] | Amor C, Feucht J, Leibold J, et al. Senolytic CART cells reverse senescence-associated pathologies[J]. Nature, 2020, 583(7814): 127-132. DOI: 10.1038/s41586-020-2403-9. |
[26] | Crunkhorn S. Fighting ageing with immune checkpoint blockade[J]. Nat Rev Drug Discov, 2023, 22(1): 17. DOI: 10.1038/d41573-022-00194-z. |
[27] |
Cornen S, Vivier E. Chemotherapy and tumor immunity[J]. Science, 2018, 362(6421): 1355-1356. DOI: 10.1126/science.aav7871.
pmid: 30573614 |
[28] |
Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic[J]. Nat Med, 2022, 28(8): 1556-1568. DOI: 10.1038/s41591-022-01923-y.
pmid: 35953721 |
[29] |
Wagner V, Gil J. Senescence as a therapeutically relevant response to CDK4/6 inhibitors[J]. Oncogene, 2020, 39(29): 5165-5176. DOI: 10.1038/s41388-020-1354-9.
pmid: 32541838 |
[30] | Xu Y, Kim JS, Li M. Illuminating anti-ageing[J]. Nat Chem, 2023, 15(4): 451-452. DOI: 10.1038/s41557-023-01164-7. |
[31] |
Dolgin E. Send in the senolytics[J]. Nat Biotechnol, 2020, 38(12): 1371-1377. DOI: 10.1038/s41587-020-00750-1.
pmid: 33184478 |
[32] | Huijbers EJM, Khan KA, Kerbel RS, et al. Tumors resurrect an embryonic vascular program to escape immunity[J]. Sci Immunol, 2022, 7(67): eabm6388. DOI: 10.1126/sciimmunol.abm6388. |
[33] | Prieto LI, Sturmlechner I, Goronzy JJ, et al. Senescent cells as thermostats of antitumor immunity[J]. Sci Transl Med, 2023, 15(699): eadg7291. DOI: 10.1126/scitranslmed.adg7291. |
[34] | Wang TW, Johmura Y, Suzuki N, et al. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes[J]. Nature, 2022, 611(7935): 358-364. DOI: 10.1038/s41586-022-05388-4. |
[35] | Miyata K, Zhou X, Nishio M, et al. Chromatin conformational changes at human satellite Ⅱ contribute to the senescence phenotype in the tumor microenvironment[J]. Proc Natl Acad Sci U S A, 2023, 120(32): e2305046120. DOI: 10.1073/pnas.2305046120. |
[36] |
Herranz N, Gallage S, Mellone M, et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype[J]. Nat Cell Biol, 2015, 17(9): 1205-1217. DOI: 10.1038/ncb3225.
pmid: 26280535 |
[37] |
Hua Y, Zheng Y, Yao Y, et al. Metformin and cancer hallmarks: shedding new lights on therapeutic repurposing[J]. J Transl Med, 2023, 21(1): 403. DOI: 10.1186/s12967-023-04263-8.
pmid: 37344841 |
[38] |
van Vliet T, Varela-Eirin M, Wang B, et al. Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression[J]. Mol Cell, 2021, 81(9): 2041-2052.e6. DOI: 10.1016/j.molcel.2021.03.018.
pmid: 33823141 |
[39] | Xu M, Tchkonia T, Ding H, et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age[J]. Proc Natl Acad Sci U S A, 2015, 112(46): E6301-E6310. DOI: 10.1073/pnas.1515386112. |
[40] | Rossi JF, Chiang HC, Lu ZY, et al. Optimisation of anti-interleukin-6 therapy: precision medicine through mathematical modelling[J]. Front Immunol, 2022, 13: 919489. DOI: 10.3389/fimmu.2022.919489. |
[41] | Lythgoe MP, Prasad V. Repositioning canakinumab for non-small cell lung cancer-important lessons for drug repurposing in oncology[J]. Br J Cancer, 2022, 127(5): 785-787. DOI: 10.1038/s41416-022-01893-5. |
[42] |
Cohen HJ. The cancer aging interface: a research agenda[J]. J Clin Oncol, 2007, 25(14): 1945-1948. DOI: 10.1200/JCO.2007.10.6807.
pmid: 17488995 |
[43] | Minteer CJ, Thrush K, Gonzalez J, et al. More than bad luck: cancer and aging are linked to replication-driven changes to the epigenome[J]. Sci Adv, 2023, 9(29): eadf4163. DOI: 10.1126/sciadv.adf4163. |
[44] |
Prieto LI, Sturmlechner I, Graves SI, et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis[J]. Cancer Cell, 2023, 41(7): 1261-1275.e6. DOI: 10.1016/j.ccell.2023.05.006.
pmid: 37267954 |
[45] |
Walters H. Senescent macrophages drive lung cancer and accumulate in aging[J]. Nat Aging, 2023, 3(7): 757. DOI: 10.1038/s43587-023-00459-1.
pmid: 37414988 |
[46] | Drapela S, Gomes AP. The aging lung reawakens dormant tumor cells[J]. Nat Cancer, 2023, 4(4): 442-443. DOI: 10.1038/s43018-023-00537-8. |
[47] |
Wong F, Omori S, Donghia NM, et al. Discovering small-molecule senolytics with deep neural networks[J]. Nat Aging, 2023, 3(6): 734-750. DOI: 10.1038/s43587-023-00415-z.
pmid: 37142829 |
[48] |
Smer-Barreto V, Quintanilla A, Elliott RJR, et al. Discovery of senolytics using machine learning[J]. Nat Commun, 2023, 14(1): 3445. DOI: 10.1038/s41467-023-39120-1.
pmid: 37301862 |
[49] |
Bordon Y. Combining EZH2 inhibition with senescence induction helps immune cells fight pancreatic cancer[J]. Nat Rev Immunol, 2023, 23(7): 411. DOI: 10.1038/s41577-023-00898-2.
pmid: 37277561 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[3] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[4] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[5] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[6] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[7] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[8] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[9] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[10] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[11] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[12] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[13] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[14] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[15] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||