国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (3): 168-172.doi: 10.3760/cma.j.cn371439-20220104-00028
收稿日期:
2022-01-04
修回日期:
2022-02-13
出版日期:
2022-03-08
发布日期:
2022-03-22
通讯作者:
严森祥
E-mail:yansenxiang@zju.edu.cn
基金资助:
Yan Danfang1, Wang Lihong1, Ye Hongxing2, Yan Senxiang1()
Received:
2022-01-04
Revised:
2022-02-13
Online:
2022-03-08
Published:
2022-03-22
Contact:
Yan Senxiang
E-mail:yansenxiang@zju.edu.cn
Supported by:
摘要:
人工智能是一种使用计算机算法来复制或模拟人类的行为,使机器拥有和人类相似的能力。随着放疗技术的飞速发展,人工智能在放疗的各个阶段均有巨大应用价值。图像分割是人工智能靶区勾画的前提,常用的应用于临床的方法主要包括基于深度学习和基于图谱库的自动分割方法。人工智能勾画危及器官技术较成熟,可显著缩短勾画时间,提高效率;勾画肿瘤靶区初有成就,在精确性方面仍有待进一步提高。人工智能技术使放疗靶区勾画越来越高效,一致性、重复性均得到了明显提升,有望为肿瘤患者提供更加精准及个体化的治疗方案。
严丹方, 王立宏, 叶红星, 严森祥. 人工智能在肿瘤放疗靶区勾画中的应用[J]. 国际肿瘤学杂志, 2022, 49(3): 168-172.
Yan Danfang, Wang Lihong, Ye Hongxing, Yan Senxiang. Application of artificial intelligence in the target delineation of radiotherapy[J]. Journal of International Oncology, 2022, 49(3): 168-172.
[1] |
Sheng K. Artificial intelligence in radiotherapy: a technological review[J]. Front Med, 2020, 14(4):431-449. DOI: 10.1007/s11684-020-0761-1.
doi: 10.1007/s11684-020-0761-1 |
[2] |
van Dijk LV, Van den Bosch L, Aljabar P, et al. Improving automa-tic delineation for head and neck organs at risk by deep learning contouring[J]. Radiother Oncol, 2020, 142:115-123. DOI: 10.1016/j.radonc.2019.09.022.
doi: 10.1016/j.radonc.2019.09.022 |
[3] |
Ahn SH, Kim E, Kim C, et al. Deep learning method for prediction of patient-specific dose distribution in breast cancer[J]. Radiat Oncol, 2021, 16(1):154. DOI: 10.1186/s13014-021-01864-9.
doi: 10.1186/s13014-021-01864-9 |
[4] |
Osman AFI, Maalej NM. Applications of machine and deep learning to patient-specific IMRT/VMAT quality assurance[J]. J Appl Clin Med Phys, 2021, 22(9):20-36. DOI: 10.1002/acm2.13375.
doi: 10.1002/acm2.13375 |
[5] |
邢碧媛, 盛宇涵, 赵迎超, 等. 人工智能在恶性肿瘤放射治疗领域的相关应用及进展[J]. 临床肿瘤学杂志, 2020, 25(7):656-663. DOI: 10.3969/j.issn.1009-0460.2020.07.015.
doi: 10.3969/j.issn.1009-0460.2020.07.015 |
[6] |
Teng L, Li H, Karim S. DMCNN: a deep multiscale convolutional neural network model for medical image segmentation[J]. J Healthc Eng, 2019, 2019:8597606. DOI: 10.1155/2019/8597606.
doi: 10.1155/2019/8597606 pmid: 31949890 |
[7] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444. DOI: 10.1038/nature14539.
doi: 10.1038/nature14539 |
[8] |
邓金城, 彭应林, 刘常春, 等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J]. 中国医学物理学杂志, 2018, 35(6):621-627. DOI: 10.3969/j.issn.1005-202X.2018.06.001.
doi: 10.3969/j.issn.1005-202X.2018.06.001 |
[9] |
Ibragimov B, Xing L. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks[J]. Med Phys, 2017, 44(2):547-557. DOI: 10.1002/mp.12045.
doi: 10.1002/mp.12045 pmid: 28205307 |
[10] |
Tong N, Gou S, Yang S, et al. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks[J]. Med Phys, 2018, 45(10):4558-4567. DOI: 10.1002/mp.13147.
doi: 10.1002/mp.13147 pmid: 30136285 |
[11] |
Tong N, Gou S, Yang S, et al. Shape constrained fully convolutio-nal DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images[J]. Med Phys, 2019, 46(6):2669-2682. DOI: 10.1002/mp.13553.
doi: 10.1002/mp.13553 pmid: 31002188 |
[12] |
Ye Y, Cai Z, Huang B, et al. Fully-automated segmentation of nasopharyngeal carcinoma on dual-sequence MRI using convolutional neural networks[J]. Front Oncol, 2020, 10:166. DOI: 10.3389/fonc.2020.00166.
doi: 10.3389/fonc.2020.00166 |
[13] |
曹祺炜, 王峰, 牛锦. 基于3D卷积神经网络的脑肿瘤医学图像分割优化[J]. 现代电子技术, 2020, 43(3):74-77. DOI: 10.16652/j.issn.1004-373x.2020.03.018.
doi: 10.16652/j.issn.1004-373x.2020.03.018 |
[14] |
王沛沛, 李金凯, 李彩虹, 等. 基于人工智能技术的危及器官自动勾画在胸部肿瘤中的应用[J]. 中国医学物理学杂志, 2019, 36(11):1346-1349. DOI: 10.3969/j.issn.1005-202X.2019.11.019.
doi: 10.3969/j.issn.1005-202X.2019.11.019 |
[15] |
Lee H, Lee E, Kim N, et al. Clinical evaluation of commercial atlas-based auto-segmentation in the head and neck region[J]. Front Oncol, 2019, 9:239. DOI: 10.3389/fonc.2019.00239.
doi: 10.3389/fonc.2019.00239 |
[16] |
Fritscher KD, Peroni M, Zaffino P, et al. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours[J]. Med Phys, 2014, 41(5):051910. DOI: 10.1118/1.4871623.
doi: 10.1118/1.4871623 |
[17] |
Wang X, Miralbell R, Fargier-Bochaton O, et al. Atlas sampling for prone breast automatic segmentation of organs at risk: the importance of patients' body mass index and breast cup size for an optimized contouring of the heart and the coronary vessels[J]. Technol Cancer Res Treat, 2020, 19:1533033820920624. DOI: 10.1177/1533033820920624.
doi: 10.1177/1533033820920624 |
[18] |
Vrtovec T, Močnik D, Strojan P, et al. Auto-segmentation of organs at risk for head and neck radiotherapy planning: from atlas-based to deep learning methods[J]. Med Phys, 2020, 47(9):e929-e950. DOI: 10.1002/mp.14320.
doi: 10.1002/mp.14320 |
[19] |
Zabel WJ, Conway JL, Gladwish A, et al. Clinical evaluation of deep learning and atlas-based auto-contouring of bladder and rectum for prostate radiation therapy[J]. Pract Radiat Oncol, 2021, 11(1):e80-e89. DOI: 10.1016/j.prro.2020.05.013.
doi: 10.1016/j.prro.2020.05.013 |
[20] |
Zhu W, Huang Y, Zeng L, et al. AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy[J]. Med Phys, 2019, 46(2):576-589. DOI: 10.1002/mp.13300.
doi: 10.1002/mp.13300 |
[21] |
Dolz J, Betrouni N, Quidet M, et al. Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: a clinical study[J]. Comput Med Imaging Graph, 2016, 52:8-18. DOI: 10.1016/j.compmedimag.2016.03.003.
doi: 10.1016/j.compmedimag.2016.03.003 |
[22] |
Močnik D, Ibragimov B, Xing L, et al. Segmentation of parotid glands from registered CT and MR images[J]. Phys Med, 2018, 52:33-41. DOI: 10.1016/j.ejmp.2018.06.012.
doi: S1120-1797(18)30494-0 pmid: 30139607 |
[23] |
Feng CH, Cornell M, Moore KL, et al. Automated contouring and planning pipeline for hippocampal-avoidant whole-brain radiotherapy[J]. Radiat Oncol, 2020, 15(1):251. DOI: 10.1186/s13014-020-01689-y.
doi: 10.1186/s13014-020-01689-y |
[24] |
Chung SY, Chang JS, Choi MS, et al. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery[J]. Radiat Oncol, 2021, 16(1):44. DOI: 10.1186/s13014-021-01771-z.
doi: 10.1186/s13014-021-01771-z |
[25] |
Speight R, Karakaya E, Prestwich R, et al. Evaluation of atlas based auto-segmentation for head and neck target volume delineation in adaptive/replan IMRT[J]. J Phys Conf Ser, 2014, 489(1):012060. DOI: 10.1088/1742-6596/489/1/012060.
doi: 10.1088/1742-6596/489/1/012060 |
[26] |
Bell LR, Dowling JA, Pogson EM, et al. Atlas-based segmentation technique incorporating inter-observer delineation uncertainty for whole breast[J]. J Phys Conf Ser, 2016, 777(1):012002. DOI: 10.1088/1742-6596/777/1/012002.
doi: 10.1088/1742-6596/777/1/012002 |
[27] |
Wong Yuzhen N, Barrett S. A review of automatic lung tumour segmentation in the era of 4DCT[J]. Rep Pract Oncol Radiother, 2019, 24(2):208-220. DOI: 10.1016/j.rpor.2019.01.003.
doi: 10.1016/j.rpor.2019.01.003 |
[28] |
Song Y, Hu J, Wu Q, et al. Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy[J]. Radiother Oncol, 2020, 145:186-192. DOI: 10.1016/j.radonc.2020.01.020.
doi: 10.1016/j.radonc.2020.01.020 |
[29] |
Men K, Dai J, Li Y. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks[J]. Med Phys, 2017, 44(12):6377-6389. DOI: 10.1002/mp.12602.
doi: 10.1002/mp.12602 |
[30] |
Men K, Chen X, Zhang Y, et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images[J]. Front Oncol, 2017, 7:315. DOI: 10.3389/fonc.2017.00315.
doi: 10.3389/fonc.2017.00315 |
[31] |
Lin L, Dou Q, Jin YM, et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma[J]. Radiology, 2019, 291(3):677-686. DOI: 10.1148/radiol.2019182012.
doi: 10.1148/radiol.2019182012 pmid: 30912722 |
[32] |
Guidi G, Maffei N, Vecchi C, et al. A support vector machine tool for adaptive tomotherapy treatments: prediction of head and neck patients criticalities[J]. Phys Med, 2015, 31(5):442-451. DOI: 10.1016/j.ejmp.2015.04.009.
doi: 10.1016/j.ejmp.2015.04.009 |
[33] |
Bridge P, Bridge R. Artificial intelligence in radiotherapy: a philosophical perspective[J]. J Med Imaging Radiat Sci, 2019, 50(4 Suppl 2):S27-S31. DOI: 10.1016/j.jmir.2019.09.003.
doi: 10.1016/j.jmir.2019.09.003 |
[1] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[2] | 顾芳萌, 徐晨阳, 雷大鹏. 人工智能辅助电子喉镜检查在喉癌及喉癌前病变诊治中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 303-307. |
[3] | 李书月, 马辰莺, 周菊英, 徐晓婷, 秦颂兵. 寡转移非小细胞肺癌的放疗进展[J]. 国际肿瘤学杂志, 2024, 51(3): 170-174. |
[4] | 李济时, 陆钊群, 刘俊茹, 吕建勋, 陈霜, 沈琳, 徐志渊, 吴平安. 新辅助放疗联合部分喉切除术治疗喉滑膜肉瘤1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(2): 123-125. |
[5] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 中国食管癌放射治疗指南(2023年版)[J]. 国际肿瘤学杂志, 2024, 51(1): 1-20. |
[6] | 高新雨, 李振江, 孙洪福, 韩丹, 赵倩, 刘成新, 黄伟. 基于MR加速器的MR引导放疗在食管癌患者中的临床应用[J]. 国际肿瘤学杂志, 2024, 51(1): 37-42. |
[7] | 崔腾璐, 吕璐, 孙鹏飞. 放疗联合免疫治疗在头颈部鳞状细胞癌治疗中的应用[J]. 国际肿瘤学杂志, 2023, 50(9): 548-552. |
[8] | 李青珊, 谢鑫, 张楠, 刘帅. 放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[9] | 许萌, 姜伟, 朱海涛, 曹雄锋. 癌相关成纤维细胞在肿瘤放疗抵抗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 227-230. |
[10] | 石小琪, 汪红艳. 肠道菌群与放射性肠炎的相互作用及研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 244-247. |
[11] | 李进芝, 赵彪, 文晓博, 张明, 袁美芳, 孙梦真, 蒲琴, 杨毅. Monaco系统计算网格尺寸对T4期鼻咽癌的剂量学影响[J]. 国际肿瘤学杂志, 2023, 50(11): 641-649. |
[12] | 耿睿, 马俊强, 郭强, 牛钊峰. 老年乳腺癌患者的综合治疗方式选择倾向及其影响因素[J]. 国际肿瘤学杂志, 2023, 50(11): 650-654. |
[13] | 王冰, 王爱馥, 刘雯舒, 范娇娇, 田伟成, 王玮莉, 刘博宇. 重组人血小板生成素治疗肿瘤放疗所致血小板减少症的疗效及安全性[J]. 国际肿瘤学杂志, 2023, 50(11): 661-667. |
[14] | 李佳宜, 王跃, 尚兰兰, 徐兴, 赵岩. 人工智能技术在胃癌诊断与治疗中的实践与展望[J]. 国际肿瘤学杂志, 2023, 50(11): 677-682. |
[15] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 新型冠状病毒感染疫情背景下肿瘤患者放射治疗管理相关问题中国专家共识(2023版)[J]. 国际肿瘤学杂志, 2023, 50(10): 577-584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||