[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
[2] |
Chen YP, Chan ATC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. DOI: 10.1016/S0140-6736(19)30956-0.
|
[3] |
Tang LL, Chen WQ, Xue WQ, et al. Global trends in incidence and mortality of nasopharyngeal carcinoma[J]. Cancer Lett, 2016, 374(1): 22-30. DOI: 10.1016/j.canlet.2016.01.040.
|
[4] |
Du T, Xiao J, Qiu Z, et al. The effectiveness of intensity-modulated radiation therapy versus 2D-RT for the treatment of nasopharyngeal carcinoma: a systematic review and meta-analysis[J]. PLoS One, 2019, 14(7): e0219611. DOI: 10.1371/journal.pone.0219611.
|
[5] |
Huang TL, Tsai MH, Chuang HC, et al. Quality of life and survival outcome for patients with nasopharyngeal carcinoma treated by volumetric-modulated arc therapy versus intensity-modulated radiotherapy[J]. Radiat Oncol, 2020, 15(1): 84. DOI: 10.1186/s13014-020-01532-4.
|
[6] |
He L, Xiao J, Wei Z, et al. Toxicity and dosimetric analysis of nasopharyngeal carcinoma patients undergoing radiotherapy with IMRT or VMAT: a regional center's experience[J]. Oral Oncol, 2020, 109: 104978. DOI: 10.1016/j.oraloncology.2020.104978.
|
[7] |
Ng WT, Corry J, Langendijk JA, et al. Current management of stage Ⅳ nasopharyngeal carcinoma without distant metastasis[J]. Cancer Treat Rev, 2020, 85: 101995. DOI: 10.1016/j.ctrv.2020.101995.
|
[8] |
Niemierko A, Goitein M. The influence of the size of the grid used for dose calculation on the accuracy of dose estimation[J]. Med Phys, 1989, 16(2): 239-247. DOI: 10.1118/1.596419.
pmid: 2541326
|
[9] |
郭栓栓, 姜仁伟, 丁秋娥, 等. 网格精度对不同肿瘤放疗计划影响[J]. 中华肿瘤防治杂志, 2017, 24(20): 1465-1468. DOI: 10.16073/j.cnki.cjcpt.2017.20.013.
|
[10] |
Srivastava SP, Cheng CW, The dosimetric and radiobiological impact of calculation grid size on head and neck IMRT[J]. Pract Radiat Oncol, 2017, 7(3): 209-217. DOI: 10.1016/j.prro.2016.10.001.
pmid: 27847266
|
[11] |
裴运通, 胡金炎, 马阳光, 等. Monaco计划系统计算网格对头颈部肿瘤小体积危及器官的剂量学影响[J]. 中国医学物理学杂志, 2019, 36(10): 1145-1151. DOI: 10.3969/j.issn.1005-202X.2019.10.006.
|
[12] |
Au KH, Ngan RKC, Ng AWY, et al. Treatment outcomes of nasopharyngeal carcinoma in modern era after intensity modulated radiotherapy (IMRT) in Hong Kong: a report of 3328 patients (HKNPCSG 1301 study)[J]. Oral Oncol, 2018, 77: 16-21. DOI: 10.1016/j.oraloncology.2017.12.004.
pmid: 29362121
|
[13] |
康敏. 中国鼻咽癌放射治疗指南(2022版)[J]. 中华肿瘤防治杂志, 2022, 29(9): 611-622. DOI: 10.16073/j.cnki.cjcpt.2022.09.01.
|
[14] |
Lee AW, Ng WT, Pan JJ, et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma[J]. Radiother Oncol, 2018, 126(1): 25-36. DOI: 10.1016/j.radonc.2017.10.032.
pmid: 29153464
|
[15] |
Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation[J]. Int J Radiat Oncol Biol Phys, 1991, 21(1): 109-122. DOI: 10.1016/0360-3016(91)90171-y.
|
[16] |
Hodapp N. The ICRU report 83: prescribing, recording and repor-ting photon-beam intensity-modulated radiation therapy (IMRT)[J]. Strahlenther Onkol, 2012, 188(1): 97-99. DOI: 10.1007/s00066-011-0015-x.
pmid: 22234506
|
[17] |
Liang SB, Wang Y, Hu XF, et al. Survival and toxicities of IMRT based on the RTOG protocols in patients with nasopharyngeal carcinoma from the endemic regions of China[J]. J Cancer, 2017, 8(18): 3718-3724. DOI: 10.7150/jca.20351.
|
[18] |
Dahshan BA, Weir JS, Bice RP, et al. Dose homogeneity analysis of adjuvant radiation treatment in surgically resected brain metastases: comparison of IORT, SRS, and IMRT indices[J]. Brachytherapy, 2021, 20(2): 426-432. DOI: 10.1016/j.brachy.2020.11.004.
pmid: 33454200
|
[19] |
Niranjan A. Conformity index for radiosurgery[J]. Neurosurgery, 2010, 67(2): E521. DOI: 10.1227/01.NEU.0000384044.57293.A8.
pmid: 20644391
|
[20] |
Reynolds TA, Jensen AR, Bellairs EE, et al. Dose gradient index for stereotactic radiosurgery/radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2020, 106(3): 604-611. DOI: 10.1016/j.ijrobp.2019.11.408.
|
[21] |
Schultheiss TE, Orton CG, Peck RA. Models in radiotherapy: volume effects[J]. Med Phys, 1983, 10(4): 410-415. DOI: 10.1118/1.595312.
pmid: 6888354
|
[22] |
Gay HA, Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy[J]. Phys Med, 2007, 23(3/4): 115-125. DOI: 10.1016/j.ejmp.2007.07.001.
|
[23] |
De Smedt B, Vanderstraeten B, Reynaert N, et al. Investigation of geometrical and scoring grid resolution for Monte Carlo dose calculations for IMRT[J]. Phys Med Biol, 2005, 50(17):4005-4019. DOI: 10.1088/0031-9155/50/17/006.
pmid: 16177526
|
[24] |
Smith CW, Morrey D, Gray K. The influence of grid size on accuracy in radiotherapy dose plotting[J]. Med Phys, 1990, 17(1): 135-136. DOI: 10.1118/1.596544.
pmid: 2308544
|
[25] |
Chung H, Jin H, Palta J, et al. Dose variations with varying calculation grid size in head and neck IMRT[J]. Phys Med Biol, 2006, 51(19): 4841-4856. DOI: 10.1088/0031-9155/51/19/008.
pmid: 16985274
|
[26] |
Aiyama H, Yamamoto M, Kawabe T, et al. Clinical significance of conformity index and gradient index in patients undergoing stereotactic radiosurgery for a single metastatic tumor[J]. J Neurosurg, 2018, 129(Suppl1): 103-110. DOI: 10.3171/2018.6.GKS181314.
pmid: 30544326
|
[27] |
Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index[J]. J Neurosurg, 2006, 105 Suppl: 194-201. DOI: 10.3171/sup.2006.105.7.194.
pmid: 18503356
|
[28] |
徐玥靓. 网格大小设定对Monaco5.11计划系统制定容积旋转调强立体定向放射治疗计划的影响分析[D]. 苏州: 苏州大学, 2020. DOI: 10.27351/d.cnki.gszhu.2020.000910.
|