
国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (12): 739-744.doi: 10.3760/cma.j.cn371439-20220816-00145
收稿日期:2022-08-16
									
				
											修回日期:2022-10-05
									
				
									
				
											出版日期:2022-12-08
									
				
											发布日期:2023-01-05
									
			通讯作者:
					张革红
											E-mail:yanera304@163.com
												Received:2022-08-16
									
				
											Revised:2022-10-05
									
				
									
				
											Online:2022-12-08
									
				
											Published:2023-01-05
									
			Contact:
					Zhang Gehong   
											E-mail:yanera304@163.com
												摘要:
免疫治疗尤其是免疫检查点抑制剂,彻底改变了晚期非小细胞肺癌的治疗模式。程序性死亡配体-1、肿瘤突变负荷对治疗反应的预测作用已得到充分证明,但其无法避免肿瘤异质性、检测方法及判读标准不一致等问题。研究发现一些新型生物标志物与免疫治疗疗效相关,如基因错配修复缺陷、微卫星不稳定性、驱动基因突变、外周血常规生物标志物、循环肿瘤细胞、循环肿瘤DNA等。进一步研究肿瘤组织和外周血的生物标志物在晚期非小细胞肺癌免疫治疗中的预测价值,可为治疗方案的选择提供参考。
雷艳, 张革红. 生物标志物在晚期非小细胞肺癌免疫治疗中的预测价值[J]. 国际肿瘤学杂志, 2022, 49(12): 739-744.
Lei Yan, Zhang Gehong. Predictive value of biomarkers in immunotherapy of advanced non-small cell lung cancer[J]. Journal of International Oncology, 2022, 49(12): 739-744.
| [1] |  
											  Zheng R, Zhang S, Zeng H, et al.  Cancer incidence and mortality in China, 2016[J]. J Nat Cancer Cent, 2022, 2(1): 1-9. DOI: 10.1016/j.jncc.2022.02.002. 
											 												 doi: 10.1016/j.jncc.2022.02.002  | 
										
| [2] |  
											  罗宏, 殷红, 胡广越, 等. 血清炎性标志物对非小细胞肺癌免疫治疗的预测价值[J]. 国际肿瘤学杂志, 2022, 49(3): 177-180. DOI: 10.3760/cma.j.cn371439-20211115-00030. 
											 												 doi: 10.3760/cma.j.cn371439-20211115-00030  | 
										
| [3] |  
											  Bie F, Tian H, Sun N, et al.  Research progress of anti-PD-1/PD-L1 immunotherapy related mechanisms and predictive biomarkers in NSCLC[J]. Front Oncol, 2022, 12: 769124. DOI: 10.3389/fonc.2022.769124. 
											 												 doi: 10.3389/fonc.2022.769124  | 
										
| [4] |  
											  Bodor JN, Boumber Y, Borghaei H. Biomarkers for immune check-point inhibition in non-small cell lung cancer (NSCLC)[J]. Cancer, 2020, 126(2): 260-270. DOI: 10.1002/cncr.32468. 
											 												 doi: 10.1002/cncr.32468  | 
										
| [5] |  
											  Reck M, Rodríguez-Abreu D, Robinson AG, et al.  Five-year out-comes with pembrolizumab versus chemotherapy for metastatic non-small-cell lung cancer with PD-L1 tumor proportion score ≥ 50[J]. J Clin Oncol, 2021, 39(21): 2339-2349. DOI: 10.1200/JCO.21.00174. 
											 												 doi: 10.1200/JCO.21.00174  | 
										
| [6] |  
											  Mok TSK, Wu YL, Kudaba I, et al.  Pembrolizumab versus chemo-therapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial[J]. Lancet, 2019, 393(10183): 1819-1830. DOI: 10.1016/S0140-6736(18)32409-7. 
											 												 doi: 10.1016/S0140-6736(18)32409-7  | 
										
| [7] |  
											  Velcheti V, Hu X, Yang L, et al.  Long-term real-world outcomes of first-line pembrolizumab monotherapy for metastatic non-small cell lung cancer with ≥50% expression of programmed cell death-ligand 1[J]. Front Oncol, 2022, 12: 834761. DOI: 10.3389/fonc.2022.834761. 
											 												 doi: 10.3389/fonc.2022.834761  | 
										
| [8] |  
											  Reck M, Ciuleanu TE, Cobo M, et al.  First-line nivolumab plus ipilimumab with two cycles of chemotherapy versus chemotherapy alone (four cycles) in advanced non-small-cell lung cancer: CheckMate 9LA 2-year update[J]. ESMO Open, 2021, 6(5): 100273. DOI: 10.1016/j.esmoop.2021.100273. 
											 												 doi: 10.1016/j.esmoop.2021.100273  | 
										
| [9] |  
											  Zhao B, Zhao H, Zhao J. Efficacy of PD-1/PD-L1 blockade mono-therapy in clinical trials[J]. Ther Adv Med Oncol, 2020, 12: 1758835920937612. DOI: 10.1177/1758835920937612. 
											 												 doi: 10.1177/1758835920937612  | 
										
| [10] |  
											  Honrubia-Peris B, Garde-Noguera J, García-Sánchez J, et al.  Soluble biomarkers with prognostic and predictive value in advanced non-small cell lung cancer treated with immunotherapy[J]. Cancers (Basel), 2021, 13(17): 4280. DOI: 10.3390/cancers13174280. 
											 												 doi: 10.3390/cancers13174280  | 
										
| [11] |  
											  Guven DC, Sahin TK, Dizdar O, et al.  Predictive biomarkers for immunotherapy efficacy in non-small-cell lung cancer: current status and future perspectives[J]. Biomark Med, 2020, 14(14): 1383-1392. DOI: 10.2217/bmm-2020-0310. 
											 												 doi: 10.2217/bmm-2020-0310 pmid: 33064030  | 
										
| [12] |  
											  Ready N, Hellmann MD, Awad MM, et al.  First-line nivolumab plus ipilimumab in advanced non-small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers[J]. J Clin Oncol, 2019, 37(12): 992-1000. DOI: 10.1200/JCO.18.01042. 
											 												 doi: 10.1200/JCO.18.01042 pmid: 30785829  | 
										
| [13] |  
											  Kim ES, Velcheti V, Mekhail T, et al.  Blood-based tumor muta-tional burden as a biomarker for atezolizumab in non-small cell lung cancer: the phase 2 B-F1RST trial[J]. Nat Med, 2022, 28(5): 939-945. DOI: 10.1038/s41591-022-01754-x. 
											 												 doi: 10.1038/s41591-022-01754-x  | 
										
| [14] |  
											  Rizvi NA, Cho BC, Reinmuth N, et al.  Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small cell lung cancer: the MYSTIC phase 3 randomized clinical trial[J]. JAMA Oncol, 2020, 6(5): 661-674. DOI: 10.1001/jamaoncol.2020.0237. 
											 												 doi: 10.1001/jamaoncol.2020.0237 pmid: 32271377  | 
										
| [15] |  
											  Otoshi T, Nagano T, Tachihara M, et al.  Possible biomarkers for cancer immunotherapy[J]. Cancers (Basel), 2019, 11(7): 935. DOI: 10.3390/cancers11070935. 
											 												 doi: 10.3390/cancers11070935  | 
										
| [16] |  
											  Giustini N, Bazhenova L. Recognizing prognostic and predictive biomarkers in the treatment of non-small cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICIs)[J]. Lung Cancer (Auckl), 2021, 12: 21-34. DOI: 10.2147/LCTT.S235102. 
											 												 doi: 10.2147/LCTT.S235102  | 
										
| [17] |  
											  Vanderwalde A, Spetzler D, Xiao N, et al.  Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients[J]. Cancer Med, 2018, 7(3): 746-756. DOI: 10.1002/cam4.1372. 
											 												 doi: 10.1002/cam4.1372  | 
										
| [18] |  
											  Reck M, Mok TSK, Nishio M, et al.  Atezolizumab plus bevaci-zumab and chemotherapy in non-small-cell lung cancer (IMpower 150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial[J]. Lancet Respir Med, 2019, 7(5): 387-401. DOI: 10.1016/S2213-2600(19)30084-0. 
											 												 doi: 10.1016/S2213-2600(19)30084-0  | 
										
| [19] |  
											  Arrieta O, Barrón F, Ramírez-Tirado LA, et al.  Efficacy and safety of pembrolizumab plus docetaxel vs docetaxel alone in patients with previously treated advanced non-small cell lung cancer: the PROLUNG phase 2 randomized clinical trial[J]. JAMA Oncol, 2020, 6(6): 856-864. DOI: 10.1001/jamaoncol.2020.0409. 
											 												 doi: 10.1001/jamaoncol.2020.0409 pmid: 32271354  | 
										
| [20] |  
											  West HJ, McCleland M, Cappuzzo F, et al.  Clinical efficacy of atezolizumab plus bevacizumab and chemotherapy in KRAS- mutated non-small cell lung cancer with STK11, KEAP1, or TP53 comutations: subgroup results from the phase Ⅲ IMpower150 trial[J]. J Immunother Cancer, 2022, 10(2): e003027. DOI: 10.1136/jitc-2021-003027. 
											 												 doi: 10.1136/jitc-2021-003027  | 
										
| [21] |  
											  Cabezón-Gutiérrez L, Custodio-Cabello S, Palka-Kotlowska M, et al.  Biomarkers of immune checkpoint inhibitors in non-small cell lung cancer: beyond PD-L1[J]. Clin Lung Cancer, 2021, 22(5): 381-389. DOI: 10.1016/j.cllc.2021.03.006. 
											 												 doi: 10.1016/j.cllc.2021.03.006 pmid: 33875382  | 
										
| [22] |  
											  Zhang N, Jiang J, Tang S, et al.  Predictive value of neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in non-small cell lung cancer patients treated with immune checkpoint inhibitors: a meta-analysis[J]. Int Immunopharmacol, 2020, 85: 106677. DOI: 10.1016/j.intimp.2020.106677. 
											 												 doi: 10.1016/j.intimp.2020.106677  | 
										
| [23] |  
											  Yang T, Hao L, Yang X, et al.  Prognostic value of derived neutro-phil-to-lymphocyte ratio (dNLR) in patients with non-small cell lung cancer receiving immune checkpoint inhibitors: a meta-analysis[J]. BMJ Open, 2021, 11(9): e049123. DOI: 10.1136/bmjopen-2021-049123. 
											 												 doi: 10.1136/bmjopen-2021-049123  | 
										
| [24] |  
											  Lim JU, Kang HS, Yeo CD, et al.  Predictability of early changes in derived neutrophil-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio in patients with advanced non-small cell lung cancer treated with immune checkpoint inhibitors[J]. J Thorac Dis, 2021, 13(5): 2824-2832. DOI: 10.21037/jtd-20-3416. 
											 												 doi: 10.21037/jtd-20-3416 pmid: 34164174  | 
										
| [25] |  
											  Mezquita L, Auclin E, Ferrara R, et al.  Association of the lung immune prognostic index with immune checkpoint inhibitor out-comes in patients with advanced non-small cell lung cancer[J]. JAMA Oncol, 2018, 4(3): 351-357. DOI: 10.1001/jamaoncol.2017.4771. 
											 												 doi: 10.1001/jamaoncol.2017.4771 pmid: 29327044  | 
										
| [26] |  
											  Liu J, Li S, Zhang S, et al.  Systemic immune-inflammation index, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio can predict clinical outcomes in patients with metastatic non-small-cell lung cancer treated with nivolumab[J]. J Clin Lab Anal, 2019, 33(8): e22964. DOI: 10.1002/jcla.22964. 
											 												 doi: 10.1002/jcla.22964  | 
										
| [27] |  
											  Shi Y, Liu X, Liu J, et al.  Correlations between peripheral blood biomarkers and clinical outcomes in advanced non-small cell lung cancer patients who received immunotherapy-based treatments[J]. Transl Lung Cancer Res, 2021, 10(12): 4477-4493. DOI: 10.21037/tlcr-21-710. 
											 												 doi: 10.21037/tlcr-21-710  | 
										
| [28] |  
											  Liu N, Jiang A, Zheng X, et al.  Prognostic nutritional index iden-tifies risk of early progression and survival outcomes in advanced non-small cell lung cancer patients treated with PD-1 inhibitors[J]. J Cancer, 2021, 12(10): 2960-2967. DOI: 10.7150/jca.55936. 
											 												 doi: 10.7150/jca.55936 pmid: 33854596  | 
										
| [29] |  
											  Peng L, Wang Y, Liu F, et al.  Peripheral blood markers predictive of outcome and immune-related adverse events in advanced non-small cell lung cancer treated with PD-1 inhibitors[J]. Cancer Immunol Immunother, 2020, 69(9): 1813-1822. DOI: 10.1007/s00262-020-02585-w. 
											 												 doi: 10.1007/s00262-020-02585-w pmid: 32350592  | 
										
| [30] |  
											  Johannet P, Sawyers A, Qian Y, et al.  Baseline prognostic nutri-tional index and changes in pretreatment body mass index associate with immunotherapy response in patients with advanced cancer[J]. J Immunother Cancer, 2020, 8(2): e001674. DOI: 10.1136/jitc-2020-001674. 
											 												 doi: 10.1136/jitc-2020-001674  | 
										
| [31] |  
											  Boutsikou E, Domvri K, Hardavella G, et al.  Tumour necrosis factor, interferon-gamma and interleukins as predictive markers of antiprogrammed cell-death protein-1 treatment in advanced non-small cell lung cancer: a pragmatic approach in clinical practice[J]. Ther Adv Med Oncol, 2018, 10: 1758835918768238. DOI: 10.1177/1758835918768238. 
											 												 doi: 10.1177/1758835918768238  | 
										
| [32] |  
											  Agulló-Ortuño MT, Gómez-Martín Ó, Ponce S, et al.  Blood pre-dictive biomarkers for patients with non-small-cell lung cancer associated with clinical response to nivolumab[J]. Clin Lung Cancer, 2020, 21(1): 75-85. DOI: 10.1016/j.cllc.2019.08.006. 
											 												 doi: S1525-7304(19)30255-4 pmid: 31562055  | 
										
| [33] |  
											  Pawlikowska P, Faugeroux V, Oulhen M, et al.  Circulating tumor cells (CTCs) for the noninvasive monitoring and personalization of non-small cell lung cancer (NSCLC) therapies[J]. J Thorac Dis, 2019, 11(Suppl 1): S45-S56. DOI: 10.21037/jtd.2018.12.80. 
											 												 doi: 10.21037/jtd.2018.12.80  | 
										
| [34] |  
											  Ikeda M, Koh Y, Teraoka S, et al.  Longitudinal evaluation of PD-L1 expression on circulating tumor cells in non-small cell lung cancer patients treated with nivolumab[J]. Cancers (Basel), 2021, 13(10): 2290. DOI: 10.3390/cancers13102290. 
											 												 doi: 10.3390/cancers13102290  | 
										
| [35] |  
											  Guibert N, Delaunay M, Lusque A, et al.  PD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab[J]. Lung Cancer, 2018, 120: 108-112. DOI: 10.1016/j.lungcan.2018.04.001. 
											 												 doi: S0169-5002(18)30317-9 pmid: 29748004  | 
										
| [36] |  
											  Janning M, Kobus F, Babayan A, et al.  Determination of PD-L1 expression in circulating tumor cells of NSCLC patients and correlation with response to PD-1/PD-L1 inhibitors[J]. Cancers (Basel), 2019, 11(6): 835. DOI: 10.3390/cancers11060835. 
											 												 doi: 10.3390/cancers11060835  | 
										
| [37] |  
											  Ricciuti B, Jones G, Severgnini M, et al.  Early plasma circulating tumor DNA (ctDNA) changes predict response to first-line pembrolizumab-based therapy in non-small cell lung cancer (NSCLC)[J]. J Immunother Cancer, 2021, 9(3): e001504. DOI: 10.1136/jitc-2020-001504. 
											 												 doi: 10.1136/jitc-2020-001504  | 
										
| [38] |  
											  Wang H, Zhou F, Qiao M, et al.  The role of circulating tumor DNA in advanced non-small cell lung cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis[J]. Front Oncol, 2021, 11: 671874. DOI: 10.3389/fonc.2021.671874. 
											 												 doi: 10.3389/fonc.2021.671874  | 
										
| [1] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. | 
| [2] | 王昆, 周中新, 臧其威. 血清TGF-β1、VEGF水平对非小细胞肺癌患者单孔胸腔镜根治术后复发的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 198-203. | 
| [3] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. | 
| [4] | 钟楠, 王淡瑜, 周欢欢, 刘宁, 戴纬, 刘黎琼, 郭智. CD30单抗联合PD-1抑制剂治疗复发难治性霍奇金淋巴瘤的疗效与安全性[J]. 国际肿瘤学杂志, 2024, 51(4): 245-248. | 
| [5] | 严爱婷, 王翠竹, 刘春桂, 鲁小敏. 卡瑞利珠单抗与信迪利单抗治疗晚期非小细胞肺癌的临床疗效及安全性分析[J]. 国际肿瘤学杂志, 2024, 51(3): 137-142. | 
| [6] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. | 
| [7] | 钱晓涛, 石子宜, 胡格. Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. | 
| [8] | 解淑萍, 孙亚红, 汪超. 早期肿瘤标志物联合NLR、PLR预测胃癌免疫治疗疗效[J]. 国际肿瘤学杂志, 2024, 51(3): 157-165. | 
| [9] | 李书月, 马辰莺, 周菊英, 徐晓婷, 秦颂兵. 寡转移非小细胞肺癌的放疗进展[J]. 国际肿瘤学杂志, 2024, 51(3): 170-174. | 
| [10] | 李丹, 李睿尧, 李膺函, 于秀艳, 吴雪峰. 血清miR-19b、miR-744-5p水平在非小细胞肺癌诊断中的临床价值[J]. 国际肿瘤学杂志, 2024, 51(2): 83-88. | 
| [11] | 姜溪, 武永存, 梁艳, 楚丽, 段颖欣, 王力军, 霍俊杰. 派安普利单抗联合化疗对晚期非小细胞肺癌患者血管生成及循环内皮细胞的影响[J]. 国际肿瘤学杂志, 2024, 51(2): 89-94. | 
| [12] | 马正红, 姜超. 非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. | 
| [13] | 张科平, 赵永生, 杨娟, 付茂勇. 绿原酸通过抑制PI3K-Akt信号通路诱导肺癌A549细胞线粒体功能障碍[J]. 国际肿瘤学杂志, 2024, 51(1): 21-28. | 
| [14] | 谢宇, 蒋澄, 黄明敏, 郭爱斌, 尹震宇, 林永娟. 超声测量视神经鞘直径评估鞘内灌注化疗对非小细胞肺癌软脑膜转移患者颅内压的影响[J]. 国际肿瘤学杂志, 2023, 50(9): 532-539. | 
| [15] | 陈欣祎, 翁一鸣, 魏家燕, 王劲松, 彭敏. 免疫检查点抑制剂在复发或转移性头颈部鳞状细胞癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 553-557. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||
