
国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (12): 735-738.doi: 10.3760/cma.j.cn371439-20220805-00144
收稿日期:2022-08-05
									
				
											修回日期:2022-09-16
									
				
									
				
											出版日期:2022-12-08
									
				
											发布日期:2023-01-05
									
			通讯作者:
					马学真
											E-mail:maxuezhen1968@126.com
												
        
               		Jin Jiahui1,2, Chen Cunhai2, Ma Xuezhen2(
)
			  
			
			
			
                
        
    
Received:2022-08-05
									
				
											Revised:2022-09-16
									
				
									
				
											Online:2022-12-08
									
				
											Published:2023-01-05
									
			Contact:
					Ma Xuezhen   
											E-mail:maxuezhen1968@126.com
												摘要:
乳腺癌是女性最常见的肿瘤,而放疗是治疗乳腺癌的重要方法。放疗的效果很大程度上取决于肿瘤细胞的放射敏感性。微小RNA(miRNA)参与乳腺癌放疗反应的关键途径包括DNA损伤修复、凋亡、细胞周期停滞、自噬和相关信号通路。探讨miRNA在调节乳腺癌对放疗的治疗反应及其在相关信号通路中的作用,可为miRNA成为评估乳腺癌诊断、预后和放射疗效的指标提供参考。
金嘉会, 陈存海, 马学真. 放射相关miRNA在乳腺癌放疗中的作用[J]. 国际肿瘤学杂志, 2022, 49(12): 735-738.
Jin Jiahui, Chen Cunhai, Ma Xuezhen. Effects of radiation-associated miRNA in radiotherapy for breast cancer[J]. Journal of International Oncology, 2022, 49(12): 735-738.
| [1] |  
											  Siegel RL, Miller KD, Fuchs HE, et al.  Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654. 
											 												 doi: 10.3322/caac.21654  | 
										
| [2] |  
											  中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013. 
											 												 doi: 10.19401/j.cnki.1007-3639.2021.10.013  | 
										
| [3] |  
											  Jarosz-Biej M, Smolarczyk R, Cichoń T, et al.  Tumor microenviron-ment as a "game changer" in cancer radiotherapy[J]. Int J Mol Sci, 2019, 20(13): 3212. DOI: 10.3390/ijms20133212. 
											 												 doi: 10.3390/ijms20133212  | 
										
| [4] |  
											  Cabrera-Licona A, Pérez-Añorve IX, Flores-Fortis M, et al.  Decip-hering the epigenetic network in cancer radioresistance[J]. Radiother Oncol, 2021, 159: 48-59. DOI: 10.1016/j.radonc.2021.03.012. 
											 												 doi: 10.1016/j.radonc.2021.03.012 pmid: 33741468  | 
										
| [5] |  
											  Qi X, Zhang DH, Wu N, et al.  CeRNA in cancer: possible functions and clinical implications[J]. J Med Genet, 2015, 52(10): 710-718. DOI: 10.1136/jmedgenet-2015-103334. 
											 												 doi: 10.1136/jmedgenet-2015-103334 pmid: 26358722  | 
										
| [6] |  
											  Scully R, Panday A, Elango R, et al.  DNA double-strand break repair-pathway choice in somatic mammalian cells[J]. Nat Rev Mol Cell Biol, 2019, 20(11): 698-714. DOI: 10.1038/s41580-019-0152-0. 
											 												 doi: 10.1038/s41580-019-0152-0  | 
										
| [7] |  
											  Tarsounas M, Sung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication[J]. Nat Rev Mol Cell Biol, 2020, 21(5): 284-299. DOI: 10.1038/s41580-020-0218-z. 
											 												 doi: 10.1038/s41580-020-0218-z  | 
										
| [8] |  
											  Tan X, Li Z, Ren S, et al.  Dynamically decreased miR-671-5p exp-ression is associated with oncogenic transformation and radiochemo-resistance in breast cancer[J]. Breast Cancer Res, 2019, 21(1): 89. DOI: 10.1186/s13058-019-1173-5. 
											 												 doi: 10.1186/s13058-019-1173-5  | 
										
| [9] |  
											  Wang B, Zheng J, Li R, et al.  Long noncoding RNA LINC02582 acts downstream of miR-200c to promote radioresistance through CHK1 in breast cancer cells[J]. Cell Death Dis, 2019, 10(10): 764. DOI: 10.1038/s41419-019-1996-0. 
											 												 doi: 10.1038/s41419-019-1996-0 pmid: 31601781  | 
										
| [10] |  
											  Pajic M, Froio D, Daly S, et al.  miR-139-5p modulates radiothe-rapy resistance in breast cancer by repressing multiple gene networks of DNA repair and ROS defense[J]. Cancer Res, 2018, 78(2): 501-515. DOI: 10.1158/0008-5472.CAN-16-3105. 
											 												 doi: 10.1158/0008-5472.CAN-16-3105  | 
										
| [11] |  
											  Icard P, Fournel L, Wu Z, et al.  Interconnection between metabo-lism and cell cycle in cancer[J]. Trends Biochem Sci, 2019, 44(6): 490-501. DOI: 10.1016/j.tibs.2018.12.007. 
											 												 doi: 10.1016/j.tibs.2018.12.007  | 
										
| [12] |  
											  吴儒星. miR-8069靶向作用CCND1增强三阴乳腺癌放射敏感性的研究[D]. 武汉: 华中科技大学, 2021. DOI: 10.27157/d.cnki.ghzku.2021.000001. 
											 												 doi: 10.27157/d.cnki.ghzku.2021.000001  | 
										
| [13] |  
											  Zhang N, Zeng X, Sun C, et al.  LncRNA LINC00963 promotes tumorigenesis and radioresistance in breast cancer by sponging miR-324-3p and inducing ACK1 expression[J]. Mol Ther Nucleic Acids, 2019, 18: 871-881. DOI: 10.1016/j.omtn.2019.09.033. 
											 												 doi: 10.1016/j.omtn.2019.09.033  | 
										
| [14] |  
											  Ren YQ, Fu F, Han J. MiR-27a modulates radiosensitivity of triple-negative breast cancer (TNBC) cells by targeting CDC27[J]. Med Sci Monit, 2015, 21: 1297-1303. DOI: 10.12659/MSM.893974. 
											 												 doi: 10.12659/MSM.893974  | 
										
| [15] |  
											  Mei Z, Su T, Ye J, et al.  The miR-15 family enhances the radio-sensitivity of breast cancer cells by targeting G2 checkpoints[J]. Radiat Res, 2015, 183(2): 196-207. DOI: 10.1667/RR13784.1. 
											 												 doi: 10.1667/RR13784.1  | 
										
| [16] |  
											  Zhang X, Li Y, Wang D, et al.  miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1[J]. Biol Res, 2017, 50(1): 27. DOI: 10.1186/s40659-017-0133-8. 
											 												 doi: 10.1186/s40659-017-0133-8 pmid: 28882183  | 
										
| [17] |  
											  Kong D, Shen D, Liu Z, et al.  Circ_0008500 knockdown improves radiosensitivity and inhibits tumorigenesis in breast cancer through the miR-758-3p/PFN2 axis[J]. J Mammary Gland Biol Neoplasia, 2022, 27(1): 37-52. DOI: 10.1007/s10911-022-09514-w. 
											 												 doi: 10.1007/s10911-022-09514-w  | 
										
| [18] |  
											  Wu J, Sun Z, Sun H, et al.  MicroRNA-27a promotes tumorige-nesis via targeting AKT in triple negative breast cancer[J]. Mol Med Rep, 2018, 17(1): 562-570. DOI: 10.3892/mmr.2017.7886. 
											 												 doi: 10.3892/mmr.2017.7886  | 
										
| [19] |  
											  Ma Y, Yu L, Yan W, et al.  lncRNA GAS5 sensitizes breast cancer cells to ionizing radiation by inhibiting DNA repair[J]. Biomed Res Int, 2022, 2022: 1987519. DOI: 10.1155/2022/1987519. 
											 												 doi: 10.1155/2022/1987519  | 
										
| [20] |  
											  Cao K, Tait SWG. Apoptosis and cancer: force awakens, phantom menace, or both?[J]. Int Rev Cell Mol Biol, 2018, 337: 135-152. DOI: 10.1016/bs.ircmb.2017.12.003. 
											 												 doi: S1937-6448(17)30101-6 pmid: 29551159  | 
										
| [21] |  
											  Lai Y, Chen Y, Lin Y, et al.  Down-regulation of lncRNA CCAT1 enhances radiosensitivity via regulating miR-148b in breast cancer[J]. Cell Biol Int, 2018, 42(2): 227-236. DOI: 10.1002/cbin.10890. 
											 												 doi: 10.1002/cbin.10890 pmid: 29024383  | 
										
| [22] |  
											  Fu Y, Xiong J. MicroRNA-124 enhances response to radiotherapy in human epidermal growth factor receptor 2-positive breast cancer cells by targeting signal transducer and activator of transcription 3[J]. Croat Med J, 2016, 57(5): 457-464. DOI: 10.3325/cmj.2016.57.457. 
											 												 doi: 10.3325/cmj.2016.57.457 pmid: 27815936  | 
										
| [23] |  
											  Yang B, Kuai F, Chen Z, et al.  miR-634 decreases the radioresis-tance of human breast cancer cells by targeting STAT3[J]. Cancer Biother Radiopharm, 2020, 35(3): 241-248. DOI: 10.1089/cbr.2019.3220. 
											 												 doi: 10.1089/cbr.2019.3220  | 
										
| [24] |  
											  Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer[J]. Mol Cancer, 2020, 19(1): 12. DOI: 10.1186/s12943-020-1138-4. 
											 												 doi: 10.1186/s12943-020-1138-4 pmid: 31969156  | 
										
| [25] |  
											  Meng C, Liu Y, Shen Y, et al.  MicroRNA-26b suppresses auto-phagy in breast cancer cells by targeting DRAM1 mRNA, and is downregulated by irradiation[J]. Oncol Lett, 2018, 15(2): 1435-1440. DOI: 10.3892/ol.2017.7452. 
											 												 doi: 10.3892/ol.2017.7452  | 
										
| [26] |  
											  Luo J, Chen J, He L. MiR-129-5p attenuates irradiation-induced autophagy and decreases radioresistance of breast cancer cells by targeting HMGB1[J]. Med Sci Monit, 2015, 21: 4122-4129. DOI: 10.12659/msm.896661. 
											 												 doi: 10.12659/msm.896661  | 
										
| [27] |  
											  Sun Q, Liu T, Yuan Y, et al.  MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1[J]. Int J Cancer, 2015, 136(5): 1003-1012. DOI: 10.1002/ijc.29065. 
											 												 doi: 10.1002/ijc.29065 pmid: 25044403  | 
										
| [28] |  
											  Gomes LR, Menck CFM, Leandro GS. Autophagy roles in the modulation of DNA repair pathways[J]. Int J Mol Sci, 2017, 18(11): 2351. DOI: 10.3390/ijms18112351. 
											 												 doi: 10.3390/ijms18112351  | 
										
| [29] |  
											  Tang D, Kang R, Livesey KM, et al.  Endogenous HMGB1 regulates autophagy[J]. J Cell Biol, 2010, 190(5): 881-892. DOI: 10.1083/jcb.200911078. 
											 												 doi: 10.1083/jcb.200911078 pmid: 20819940  | 
										
| [30] |  
											  Sun H, Ding C, Zhang H, et al.  Let-7 miRNAs sensitize breast cancer stem cells to radiation-induced repression through inhibition of the cyclin D1/Akt1/Wnt1 signaling pathway[J]. Mol Med Rep, 2016, 14(4): 3285-3292. DOI: 10.3892/mmr.2016.5656. 
											 												 doi: 10.3892/mmr.2016.5656  | 
										
| [31] |  
											  Hong SE, Jin HO, Kim SM, et al.  miR-3188 enhances sensitivity of breast cancer cells to ionizing radiation by down-regulating rictor[J]. Anticancer Res, 2021, 41(12): 6169-6176. DOI: 10.21873/anticanres.15436. 
											 												 doi: 10.21873/anticanres.15436  | 
										
| [32] |  
											  Yu L, Yang Y, Hou J, et al.  MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells[J]. Oncol Rep, 2015, 34(4): 1845-1852. DOI: 10.3892/or.2015.4173. 
											 												 doi: 10.3892/or.2015.4173 pmid: 26252024  | 
										
| [33] |  
											  Metheetrairut C, Adams BD, Nallur S, et al.  Cel-miR-237 and its homologue, hsa-miR-125b, modulate the cellular response to ionizing radiation[J]. Oncogene, 2017, 36(4): 512-524. DOI: 10.1038/onc.2016.222. 
											 												 doi: 10.1038/onc.2016.222 pmid: 27321180  | 
										
| [34] |  
											  Lee HC, Her NG, Kang D, et al.  Radiation-inducible miR-770-5p sensitizes tumors to radiation through direct targeting of PDZ-binding kinase[J]. Cell Death Dis, 2017, 8(3): e2693. DOI: 10.1038/cddis.2017.116. 
											 												 doi: 10.1038/cddis.2017.116  | 
										
| [35] |  
											  Luo M, Ding L, Li Q, et al.  MiR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα[J]. Breast Cancer, 2017, 24(5): 673-682. DOI: 10.1007/s12282-017-0756-1. 
											 												 doi: 10.1007/s12282-017-0756-1 pmid: 28138801  | 
										
| [1] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. | 
| [2] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. | 
| [3] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. | 
| [4] | 龚艳, 陈洪雷. 微RNA调控卵巢癌顺铂耐药的机制研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 186-190. | 
| [5] | 陈波光, 王苏贵, 张永杰. 血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. | 
| [6] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. | 
| [7] | 王景, 许文婷. 中性粒细胞与淋巴细胞比值、癌胚抗原联合凝血指标对直径≤1.0 cm的良恶性乳腺结节鉴别诊断价值研究[J]. 国际肿瘤学杂志, 2023, 50(9): 520-526. | 
| [8] | 冯诚天, 黄芙蓉, 曹世玉, 王健宇, 南丁阿比雅思, 姜永冬, 朱娟英. HER2阳性乳腺癌患者HER2表达水平与影像学特征的关系[J]. 国际肿瘤学杂志, 2023, 50(9): 527-531. | 
| [9] | 冯东旭, 吴炜, 高平发, 王军, 施丽娟, 陈大伟, 李文兵, 张美峰. miR-451通过调控Rho/ROCK1信号通路对乳腺癌细胞糖酵解及凋亡的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 449-456. | 
| [10] | 王文德, 曾德. 乳腺癌内分泌治疗耐药的机制研究进展[J]. 国际肿瘤学杂志, 2023, 50(6): 352-356. | 
| [11] | 李青珊, 谢鑫, 张楠, 刘帅. 放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. | 
| [12] | 全祯豪, 徐飞鹏, 黄哲, 黄先进, 陈日红, 孙开裕, 胡旭, 林琳. 沉默lncRNA FTX通过miR-22-3p/NLRP3炎症体通路抑制胃癌细胞增殖[J]. 国际肿瘤学杂志, 2023, 50(4): 202-207. | 
| [13] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏. HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. | 
| [14] | 周婷, 徐少华, 梅林. 贝伐珠单抗联合卡培他滨治疗晚期乳腺癌的有效性及安全性[J]. 国际肿瘤学杂志, 2023, 50(3): 144-149. | 
| [15] | 黎立喜, 张娣, 罗扬, 马飞. PARP抑制剂在乳腺癌中的临床应用[J]. 国际肿瘤学杂志, 2023, 50(2): 91-96. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||