国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (5): 287-291.doi: 10.3760/cma.j.cn371439-20200819-00055
收稿日期:
2020-08-19
修回日期:
2020-12-25
出版日期:
2021-05-08
发布日期:
2021-06-09
通讯作者:
杨建凯
E-mail:yangjiankai8306@163.com
基金资助:
Yang Jiankai(), Huo Haoran, Sun Guozhu, Fan Zhenzeng, Jiao Baohua
Received:
2020-08-19
Revised:
2020-12-25
Online:
2021-05-08
Published:
2021-06-09
Contact:
Yang Jiankai
E-mail:yangjiankai8306@163.com
Supported by:
摘要:
光学相干层析成像(OCT)是一种功能强大的光学成像,能够对活体生物组织内部的微观结构进行高分辨率的横断面层析成像。随着OCT技术的迅猛发展,广大研究者进行了广泛的临床前和临床期肿瘤成像,从而对肿瘤复杂的生理、细胞和分子改变有了更深刻的理解。OCT的临床前研究已经阐明了肿瘤生物学中许多难以理解的方面,而OCT的临床应用正在彻底改变肿瘤的诊断和治疗。作为一种新型无创的检查方法,OCT技术可实现肿瘤的术中成像,提供有意义的图像资料,将为肿瘤的诊断、分级、边界判定提供巨大的帮助。
杨建凯, 霍浩然, 孙国柱, 范振增, 焦保华. 光学相干层析成像技术在肿瘤诊疗方面的应用[J]. 国际肿瘤学杂志, 2021, 48(5): 287-291.
Yang Jiankai, Huo Haoran, Sun Guozhu, Fan Zhenzeng, Jiao Baohua. Application of optical coherency tomography in tumor diagnosis and treatment[J]. Journal of International Oncology, 2021, 48(5): 287-291.
[1] |
Si P, Honkala A, de la Zerda A, et al. Optical microscopy and coherence tomography of cancer in living subjects[J]. Trends Cancer, 2020,6(3):205-222. DOI: 10.1016/j.trecan.2020.01.008.
doi: 10.1016/j.trecan.2020.01.008 |
[2] |
Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography[J]. Science, 1991,254(5035):1178-1181. DOI: 10.1126/science.1957169.
doi: 10.1126/science.1957169 |
[3] |
Tearney GJ, Boppart SA, Bouma BE, et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography[J]. Optics Letters, 1996,21(12):543-545. DOI: 10.1364/ol.21.000543.
doi: 10.1364/OL.21.000543 |
[4] | 叶鳞泓, 鲍静, 邵毅. 多普勒OCT在眼科疾病的应用进展[J]. 眼科新进展, 2017(7):680-683. DOI: 10.13389/j.cnki.rao.2017.0173. |
[5] |
Shields CL, Manalac J, Das C, et al. Review of spectral domain enhanced depth imaging optical coherence tomography of tumors of the choroid[J]. Indian J Ophthalmol, 2015,63(2):117-121. DOI: 10.4103/0301-4738.154377.
doi: 10.4103/0301-4738.154377 pmid: 25827541 |
[6] |
Hussain R, Anantharaman G, Rajesh B, et al. Real-time in vivo micromorphology and histopathology of choroidal osteoma using enhanced depth imaging[J]. Indian J Ophthalmol, 2015,63(5):453-455. DOI: 10.4103/0301-4738.159887.
doi: 10.4103/0301-4738.159887 pmid: 26139810 |
[7] |
Gong C, Shen M, Zheng X, et al. Precise delineation and tumor localization based on novel image registration strategy between optical coherence tomography and computed tomography in the radiotherapy of intraocular cancer[J]. Phys Med Biol, 2019,64(12):125009. DOI: 10.1088/1361-6560/ab0ddf.
doi: 10.1088/1361-6560/ab0ddf |
[8] |
Shinohara K, Tanaka N, Jonas JB, et al. Ultrawide-field OCT to investigate relationships between myopic macular retinoschisis and posterior staphyloma[J]. Ophthalmology, 2018,125(10):1575-1586. DOI: 10.1016/j.ophtha.2018.03.053.
doi: S0161-6420(18)30116-7 pmid: 29716783 |
[9] |
Tearney GJ, Brezinski ME, Bouma BE, et al. In vivo endoscopic optical biopsy with optical coherence tomography[J]. Science, 1997,276(5321):2037-2039. DOI: 10.1126/science.276.5321.2037.
doi: 10.1126/science.276.5321.2037 |
[10] |
Böhringer HJ, Lankenau E, Rohde V, et al. Optical coherence tomography for experimental neuroendoscopy[J]. Minim Invasive Neurosurg, 2006,49(5):269-275. DOI: 10.1055/s-2006-954574.
doi: 10.1055/s-2006-954574 |
[11] |
Kim S, Lee C, Kim JY, et al. Two-axis polydimethylsiloxane-based electromagnetic microelectromechanical system scanning mirror for optical coherence tomography[J]. J Biomed Opt, 2016,21(10):106001. DOI: 10.1117/1.JBO.21.10.106001.
doi: 10.1117/1.JBO.21.10.106001 |
[12] |
Wani S, Rubenstein JH, Vieth M, et al. Adversarial convolutional network for esophageal tissue segmentation on OCT images[J]. Biomed Opt Express, 2020,11(6):3095-3110. DOI: 10.1364/BOE.394715.
doi: 10.1364/BOE.394715 |
[13] |
Testoni PA, Mangiavillano B. Advanced imaging for Barrett's eso-phagus and early neoplasia: surface and subsurface imaging for diagnosis and management[J]. Gastroenterology, 2016,151(5):822-835. DOI: 10.1053/j.gastro.2016.09.040.
doi: 10.1053/j.gastro.2016.09.040 |
[14] | 罗斯特, 范应威, 常玮, 等. 扫频光学相干层析成像应用于判断黏液型胃癌边界区域[J]. 光学学报, 2018,38(5):221-226. DOI: 10.3788/AOS201838.0517001. |
[15] |
Yu H, Shen JH, Shah RJ, et al. Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps[J]. Biomed Opt Express, 2015,6(2):457-472. DOI: 10.1364/BOE.6.000457.
doi: 10.1364/BOE.6.000457 |
[16] |
Zeng Y, Xu S, Chapman WC, et al. Real-time colorectal cancer diagnosis using PR-OCT with deep learning[J]. Theranostics, 2020,10(6):2587-2596. DOI: 10.7150/thno.40099.
doi: 10.7150/thno.40099 |
[17] | Li Z, Tang Q, Dickfeld T, et al. Depth-resolved mapping of muscular bundles in myocardium pulmonary junction using optical cohe-rence tomography[J]. J Biomed Opt, 2018,23(7):1-5. DOI: 10.1117/1.JBO.23.7.076004. |
[18] | Almog IF, Chen FD, Senova S, et al. Full-field swept-source optical coherence tomography and neural tissue classification for deep brain imaging[J]. J Biophotonics, 2020,13(2):e201960083. DOI: 10.1002/ jbio.201960083. |
[19] | Valdés PA, Roberts DW, Lu FK, et al. Optical technologies for intraoperative neurosurgical guidance[J]. Neurosurg Focus, 2016,40(3):E8. DOI: 10.3171/2015.12.FOCUS15550. |
[20] |
Yashin KS, Kiseleva EB, Moiseev AA, et al. Quantitative nontumorous and tumorous human brain tissue assessment using microstructural co- and cross-polarized optical coherence tomography[J]. Sci Rep, 2019,9(1):2024. DOI: 10.1038/s41598-019-38493-y.
doi: 10.1038/s41598-019-38493-y |
[21] | Lenz M, Krug R, Dillmann C, et al. Automated differentiation between meningioma and healthy brain tissue based on optical cohe-rence tomography ex vivo images using texture features[J]. Biomed Opt, 2018,23(7):1-7. DOI: 10.1117/1.JBO.23.7.071205. |
[22] |
Yu X, Hu C, Zhang W, et al. Feasibility evaluation of micro-optical coherence tomography (μOCT) for rapid brain tumor type and grade discriminations: μOCT images versus pathology[J]. BMC Med Imaging, 2019,19(1):102. DOI: 10.1186/s12880-019-0405-6.
doi: 10.1186/s12880-019-0405-6 |
[23] |
Juarez-Chambi RM, Kut C, Rico-Jimenez JJ, et al. AI-assisted in situ detection of human glioma infiltration using a novel computa-tional method for optical coherence tomography[J]. Clin Cancer Res, 2019,25(21):6329-6338. DOI: 10.1158/1078-0432.CCR-19-0854.
doi: 10.1158/1078-0432.CCR-19-0854 pmid: 31315883 |
[24] |
Fan YW, Xia Y, Zhang XR, et al. Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics[J]. Biosci Trends, 2018,12(1):12-23. DOI: 10.5582/bst.2017.01258.
doi: 10.5582/bst.2017.01258 |
[25] |
van Manen L, Dijkstra J, Boccara C, et al. The clinical usefulness of optical coherence tomography during cancer interventions[J]. J Cancer Res Clin Oncol, 2018,144(10):1967-1990. DOI: 10.1007/s00432-018-2690-9.
doi: 10.1007/s00432-018-2690-9 |
[26] | Liang CP, Yang B, Kim IK, et al. Concurrent multiscale imaging with magnetic resonance imaging and optical coherence tomography[J]. Biomed Opt, 2013,18(4):046015. DOI: 10.1117/1.JBO.18.4.040506. |
[27] |
Xi J, Chen Y, Li X. Characterizing optical properties of nano contrast agents by using cross-referencing OCT imaging[J]. Biomed Opt Express, 2013,4(6):842-851. DOI: 10.1364/BOE.4.000842.
doi: 10.1364/BOE.4.000842 |
[28] |
Yashin KS, Kiseleva EB, Gubarkova EV, et al. Cross-polarization optical coherence tomography for brain tumor imaging[J]. Front Oncol, 2019,9:201. DOI: 10.3389/fonc.2019.00201.
doi: 10.3389/fonc.2019.00201 |
[29] |
Li YQ, Chiu K, Liu XR, et al. Polarization-sensitive optical cohe-rence tomography for brain tumor characterization[J]. Biophys J, 2019,117(7):1179-1188. DOI: 10.1016/j.bpj.2019.08.010.
doi: 10.1016/j.bpj.2019.08.010 |
[30] | Fabelo C, Selmic LE, Huang PC, et al. Evaluating optical cohe-rence tomography for surgical margin assessment of canine mammary tumors[J]. Vet Comp Oncol, 2020: 10.1111/vco.12632. DOI: 10.1111/vco.12632. |
[31] | Wang J, Xu Y, Boppart SA. Review of optical coherence tomography in oncology[J]. J Biomed Opt, 2017,22(12):1-23. DOI: 10.1117/1.JBO.22.12.121711. |
[32] | Canavesi C, Rolland JP. Ten years of gabor-domain optical cohe-rence microscopy[J]. Appl Sci (Basel), 2019,9(12):2565. DOI: 10.3390/app9122565. |
[33] |
Mesa KJ, Selmic LE, Pande P, et al. Intraoperative optical cohe-rence tomography for soft tissue sarcoma differentiation and margin identification[J]. Lasers Surg Med, 2017,49(3):240-248. DOI: 10.1002/lsm.22633.
doi: 10.1002/lsm.22633 |
[34] | Kut C, Chaichana KL, Xi J, et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography[J]. Sci Transl Med, 2015, 7(292): 292ra100. DOI: 10.1126/scitranslmed.3010611. |
[35] |
Fan Y, Zhang B, Chang W, et al. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment[J]. Int J Comput Assist Radiol Surg, 2018,13(3):411-423. DOI: 10.1007/s11548-017-1664-8.
doi: 10.1007/s11548-017-1664-8 |
[36] |
Plekhanov AA, Sirotkina MA, Sovetsky AA, et al. Histological validation of in vivo assessment of cancer tissue inhomogeneity and automated morphological segmentation enabled by optical coherence elastography[J]. Sci Rep, 2020,10(1):11781. DOI: 10.1038/s41598-020-68631-w.
doi: 10.1038/s41598-020-68631-w |
[37] |
Yuan W, Kut C, Liang WX, et al. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection[J]. Sci Rep, 2017,7:44909. DOI: 10.1038/srep44909.
doi: 10.1038/srep44909 |
[38] | Zhu M, Chang W, Jing LK, et al. Dual-modality optical diagnosis for precise in vivo identification of tumors in neurosurgery[J]. The-ranostics, 2019,9(10):2827-2842. DOI: 10.7150/thno.33823. |
[39] |
Zeng Y, Xu S, Chapman WC Jr, et al. Real-time colorectal cancer diagnosis using PR-OCT with deep learning[J]. Theranostics, 2020,10(6):2587-2596. DOI: 10.7150/thno.40099.
doi: 10.7150/thno.40099 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[3] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[4] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[5] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[6] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[7] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[8] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[9] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[10] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[11] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[12] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[13] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[14] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[15] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||