
国际肿瘤学杂志 ›› 2020, Vol. 47 ›› Issue (6): 355-359.doi: 10.3760/cma.j.cn371439-20191227-00035
收稿日期:2019-12-27
									
				
											修回日期:2020-01-06
									
				
									
				
											出版日期:2020-06-08
									
				
											发布日期:2020-07-22
									
			通讯作者:
					徐秀莲
											E-mail:xxlqjl@sina.com
												基金资助:Received:2019-12-27
									
				
											Revised:2020-01-06
									
				
									
				
											Online:2020-06-08
									
				
											Published:2020-07-22
									
			Contact:
					Xu Xiulian   
											E-mail:xxlqjl@sina.com
												Supported by:摘要:
跨膜蛋白(TMEM)是一类膜蛋白,又称整合膜蛋白,包含至少一个跨膜片段。其与恶性肿瘤的增殖、侵袭和转移密切相关,TMEM48、TMEM45A/B、TMEM14A、TMEM158和TMEM206起促瘤作用,TMEM25和TMEM7起抑瘤作用,TMEM16A、TMEM17、TMEM97、TMEM88和TMEM176在不同肿瘤中起异质性作用,这些TMEM或可作为潜在的预后指标和新的治疗靶点。
缪秋菊, 徐秀莲. 跨膜蛋白在恶性肿瘤中的作用[J]. 国际肿瘤学杂志, 2020, 47(6): 355-359.
Miao Qiuju, Xu Xiulian. Role of transmembrane proteins in malignant tumors[J]. Journal of International Oncology, 2020, 47(6): 355-359.
| [1] |  
											  Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer[J]. Mol Cancer, 2018,17(1):58. DOI: 10.1186/s12943-018-0782-4. 
											 												 doi: 10.1186/s12943-018-0782-4 pmid: 29455648  | 
										
| [2] | Rodriguez-Bravo V, Pippa R, Song WM, et al. Nuclear pores promote lethal prostate cancer by increasing POM121-driven E2F1, MYC, and AR nuclear import[J]. Cell, 2018,174(5):174-1215.e1220.DOI: 10.1016/j.cell.2018.07.015. | 
| [3] |  
											  Qiao W, Han Y, Jin W, et al. Overexpression and biological function of TMEM48 in non-small cell lung carcinoma[J]. Tumour Biol, 2016,37(2):2575-2586. DOI: 10.1007/s13277-015-4014-x. 
											 												 doi: 10.1007/s13277-015-4014-x pmid: 26392108  | 
										
| [4] |  
											  Zhu M, Jiang B, Yan D, et al. Knockdown of TMEM45A overcomes multidrug resistance and epithelial-mesenchymal transition in human colorectal cancer cells through inhibition of TGF-beta signaling pathway[J]. Clin Exp Pharmacol Physiol, 2019,47(3):503-516. DOI: 10.1111/1440-1681.13220. 
											 												 doi: 10.1111/1440-1681.13220 pmid: 31788833  | 
										
| [5] |  
											  Guo J, Chen L, Luo N, et al. Inhibition of TMEM45A suppresses proliferation, induces cell cycle arrest and reduces cell invasion in human ovarian cancer cells[J]. Oncol Rep, 2015,33(6):3124-3130. DOI: 10.3892/or.2015.3902. 
											 												 doi: 10.3892/or.2015.3902 pmid: 25872785  | 
										
| [6] |  
											  Sun W, Qiu G, Zou Y, et al. Knockdown of TMEM45A inhibits the proliferation, migration and invasion of glioma cells[J]. Int J Clin Exp Pathol, 2015,8(10):12657-12667. 
											 												 pmid: 26722455  | 
										
| [7] |  
											  Luo F, Yang K, Wang YZ, et al. TMEM45B is a novel predictive biomarker for prostate cancer progression and metastasis[J]. Neoplasma, 2018,65(5):815-821. DOI: 10.4149/neo_2018_170822N551. 
											 												 doi: 10.4149/neo_2018_170822N551 pmid: 30249106  | 
										
| [8] |  
											  Zhao LC, Shen BY, Deng XX, et al. TMEM45B promotes proliferation, invasion and migration and inhibits apoptosis in pancreatic can-cer cells[J]. Mol Biosyst, 2016,12(6):1860-1870. DOI: 10.1039/c6mb00203j. 
											 												 doi: 10.1039/c6mb00203j pmid: 27108650  | 
										
| [9] |  
											  Hu R, Hu F, Xie X, et al. TMEM45B, up-regulated in human lung cancer, enhances tumorigenicity of lung cancer cells[J]. Tumour Biol, 2016,37(9):12181-12191. DOI: 10.1007/s13277-016-5063-5. 
											 												 doi: 10.1007/s13277-016-5063-5 pmid: 27225290  | 
										
| [10] |  
											  Molina-Pinelo S, Gutiérrez G, Pastor MD, et al. MicroRNA-dependent regulation of transcription in non-small cell lung cancer[J]. PLoS One, 2014,9(3):e90524. DOI: 10.1371/journal.pone.0090524. 
											 												 doi: 10.1371/journal.pone.0090524 pmid: 24625834  | 
										
| [11] |  
											  Li Y, Guo W, Liu S, et al. Silencing transmembrane protein 45B (TNEM45B) inhibits proliferation, invasion, and tumorigenesis in osteosarcoma cells[J]. Oncol Res, 2017,25(6):1021-1026. DOI: 10.3727/096504016x14821477992177. 
											 												 doi: 10.3727/096504016X14821477992177 pmid: 28244852  | 
										
| [12] | Shen K, Yu W, Yu Y, et al. Knockdown of TMEM45B inhibits cell proliferation and invasion in gastric cancer[J]. Biomed Pharmaco-ther, 2018,104:576-581. DOI: 10.1016/j.biopha.2018.05.016. | 
| [13] |  
											  Zhang Q, Chen X, Zhang X, et al. Knockdown of TMEM14A expression by RNAi inhibits the proliferation and invasion of human ovarian cancer cells[J]. Biosci Rep, 2016,36(1):e00298. DOI: 10.1042/bsr20150258. 
											 												 doi: 10.1042/BSR20150258 pmid: 26896463  | 
										
| [14] |  
											  Salim H, Zong D, Hååg P, et al. DKK1 is a potential novel mediator of cisplatin-refractoriness in non-small cell lung cancer cell lines[J]. BMC Cancer, 2015,15:628. DOI: 10.1186/s12885-015-1635-9. 
											 												 doi: 10.1186/s12885-015-1635-9 pmid: 26353782  | 
										
| [15] |  
											  Cheng Z, Guo J, Chen L, et al. Overexpression of TMEM158 contributes to ovarian carcinogenesis[J]. J Exp Clin Cancer Res, 2015,34:75. DOI: 10.1186/s13046-015-0193-y. 
											 												 doi: 10.1186/s13046-015-0193-y pmid: 26239324  | 
										
| [16] |  
											  Liu L, Zhang J, Li S, et al. Silencing of TMEM158 inhibits tumorigenesis and multidrug resistance in colorectal can-cer[J]. Nutr Cancer, 2019: 1-10. DOI: 10.1080/01635581.2019.1650192. 
											 												 doi: 10.1080/01635581.2020.1783330 pmid: 32586130  | 
										
| [17] |  
											  Fu Y, Yao N, Ding D, et al. TMEM158 promotes pancreatic cancer aggressiveness by activation of TGFbeta1 and PI3K/AKT signaling pathway[J]. J Cell Physiol, 2020,235(3):2761-2775. DOI: 10.1002/jcp.29181. 
											 												 doi: 10.1002/jcp.29181 pmid: 31531884  | 
										
| [18] |  
											  Yang J, Chen J, Del Carmen Vitery M, et al. PAC, an evolutiona-rily conserved membrane protein, is a proton-activated chloride channel[J]. Science, 2019,364(6438):395-399. DOI: 10.1126/science.aav9739. 
											 												 doi: 10.1126/science.aav9739 pmid: 31023925  | 
										
| [19] |  
											  Zhao J, Zhu D, Zhang X, et al. TMEM206 promotes the malignancy of colorectal cancer cells by interacting with AKT and extracellular signal-regulated kinase signaling pathways[J]. J Cell Physiol, 2019,234(7):10888-10898. DOI: 10.1002/jcp.27751. 
											 												 doi: 10.1002/jcp.27751 pmid: 30417481  | 
										
| [20] |  
											  Kaliaperumal J, Padarthi P, Elangovan N, et al. Anti-tumorigenic effect of nano formulated peptide pACC1 by diminishing de novo lipogenisis in DMBA induced mammary carcinoma rat model[J]. Biomed Pharmacother, 2014,68(6):763-773. DOI: 10.1016/j.biopha.2014.07.016. 
											 												 doi: 10.1016/j.biopha.2014.07.016  | 
										
| [21] |  
											  Doolan P, Clynes M, Kennedy S, et al. TMEM25, REPS2 and Meis 1: favourable prognostic and predictive biomarkers for breast cancer[J]. Tumour Biol, 2009,30(4):200-209. DOI: 10.1159/000239795. 
											 												 doi: 10.1159/000239795 pmid: 19776672  | 
										
| [22] |  
											  Hrašovec S, Hauptman N, Glǎvac D, et al. TMEM25 is a candidate biomarker methylated and down-regulated in colorectal cancer [J]. Dis Markers, 2013,34(2):93-104. DOI: 10.3233/dma-120948. 
											 												 doi: 10.3233/DMA-120948  | 
										
| [23] |  
											  Zhou X, Popescu NC, Klein G, et al. The interferon-alpha responsive gene TMEM7 suppresses cell proliferation and is downregulated in human hepatocellular carcinoma[J]. Cancer Genet Cytogenet, 2007,177(1):6-15. DOI: 10.1016/j.cancergencyto.2007.04.007. 
											 												 doi: 10.1016/j.cancergencyto.2007.04.007 pmid: 17693185  | 
										
| [24] |  
											  Wrzesiński T, Szelag M, Cieślikowski WA, et al. Expression of pre-selected TMEMs with predicted ER localization as potential classi-fiers of ccRCC tumors [J]. BMC Cancer, 2015,15:518. DOI: 10.1186/s12885-015-1530-4. 
											 												 doi: 10.1186/s12885-015-1530-4 pmid: 26169495  | 
										
| [25] |  
											  Dang S, Feng S, Tien J, et al. Cryo-EM structures of the TMEM16A calcium-activated chloride channel[J]. Nature, 2017,552(7685):426-429. DOI: 10.1038/nature25024. 
											 												 doi: 10.1038/nature25024 pmid: 29236684  | 
										
| [26] |  
											  Ji Q, Guo S, Wang X, et al. Recent advances in TMEM16A: structure, function, and disease[J]. J Cell Physiol, 2019,234(6):7856-7873. DOI: 10.1002/jcp.27865. 
											 												 doi: 10.1002/jcp.27865 pmid: 30515811  | 
										
| [27] |  
											  Finegersh A, Kulich S, Guo T, et al. DNA methylation regulates TMEM16A/ANO1 expression through multiple CpG islands in head and neck squamous cell carcinoma[J]. Sci Rep, 2017,7(1):15173. DOI: 10.1038/s41598-017-15634-9. 
											 												 doi: 10.1038/s41598-017-15634-9 pmid: 29123240  | 
										
| [28] |  
											  Wang H, Zou L, Ma K, et al. Cell-specific mechanisms of TMEM16A Ca(2+)-activated chloride channel in cancer[J]. Mol Cancer, 2017,16(1):152. DOI: 10.1186/s12943-017-0720-x. 
											 												 doi: 10.1186/s12943-017-0720-x pmid: 28893247  | 
										
| [29] |  
											  Crottès D, Jan LY. The multifaceted role of TMEM16A in cancer[J]. Cell Calcium, 2019,82:102050. DOI: 10.1016/j.ceca.2019.06.004. 
											 												 doi: 10.1016/j.ceca.2019.06.004 pmid: 31279157  | 
										
| [30] |  
											  Wu H, Wang H, Guan S, et al. Cell-specific regulation of proliferation by Ano1/TMEM16A in breast cancer with different ER, PR, and HER2 status[J]. Oncotarget, 2017,8(49):84996-85013. DOI: 10.18632/oncotarget.18662. 
											 												 doi: 10.18632/oncotarget.18662 pmid: 29156699  | 
										
| [31] |  
											  Zhang X, Zhang Y, Miao Y, et al. TMEM17 depresses invasion and metastasis in lung cancer cells via ERK signaling pathway[J]. Oncotarget, 2017,8(41):70685-70694. DOI: 10.18632/oncotarget.19977. 
											 												 doi: 10.18632/oncotarget.19977 pmid: 29050311  | 
										
| [32] |  
											  Zhao Y, Song K, Zhang Y, et al. TMEM17 promotes malignant progression of breast cancer via AKT/GSK3β signaling[J]. Cancer Manag Res, 2018,10:2419-2428. DOI: 10.2147/cmar.S168723. 
											 												 doi: 10.2147/CMAR.S168723 pmid: 30122991  | 
										
| [33] |  
											  Shan Y, Ding H, Lu J, et al. Pleural MAC30 as a prognostic mar-ker in NSCLC with malignant pleural effusion[J]. Oncotarget, 2017,8(68):112809-112815. DOI: 10.18632/oncotarget.22631. 
											 												 doi: 10.18632/oncotarget.22631 pmid: 29348867  | 
										
| [34] |  
											  Qu T, Zhao Y, Chen Y, et al. Down-regulated MAC30 expression inhibits breast cancer cell invasion an31934012d EMT by suppre-ssing Wnt/beta-catenin and PI3K/Akt signaling pathways[J]. Int J Clin Exp Pathol, 2019,12(5):1888-1896. 
											 												 pmid: 31934012  | 
										
| [35] |  
											  Kabe Y, Nakane T, Koike I, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance[J]. Nat Commun, 2016,7:11030. DOI: 10.1038/ncomms11030. 
											 												 doi: 10.1038/ncomms11030 pmid: 26988023  | 
										
| [36] |  
											  Song GQ, Zhao Y. MAC30 knockdown involved in the activation of the Hippo signaling pathway in breast cancer cells[J]. Biol Chem, 2018,399(11):1305-1311. DOI: 10.1515/hsz-2018-0250. 
											 												 doi: 10.1515/hsz-2018-0250 pmid: 29990302  | 
										
| [37] |  
											  Longhitano L, Castracani CC, Tibullo D, et al. Sigma-1 and Sigma-2 receptor ligands induce apoptosis and autophagy but have opposite effect on cell proliferation in uveal melanoma[J]. Oncotarget, 2017,8(53):91099-91111. DOI: 10.18632/oncotarget.19556. 
											 												 doi: 10.18632/oncotarget.19556 pmid: 29207628  | 
										
| [38] |  
											  Liu CC, Yu CF, Wang SC, et al. Sigma-2 receptor/TMEM97 agonist PB221 as an alternative drug for brain tumor[J]. BMC Cancer, 2019,19(1):473. DOI: 10.1186/s12885-019-5700-7. 
											 												 doi: 10.1186/s12885-019-5700-7 pmid: 31109310  | 
										
| [39] |  
											  Huang YS, Lu HL, Zhang LJ, et al. Sigma-2 receptor ligands and their perspectives in cancer diagnosis and therapy[J]. Med Res Rev, 2014,34(3):532-566. DOI: 10.1002/med.21297. 
											 												 doi: 10.1002/med.21297 pmid: 23922215  | 
										
| [40] |  
											  Ge YX, Wang CH, Hu FY, et al. New advances of TMEM88 in cancer initiation and progression, with special emphasis on Wnt signaling pathway[J]. J Cell Physiol, 2018,233(1):79-87. DOI: 10.1002/jcp.25853. 
											 												 doi: 10.1002/jcp.25853 pmid: 28181235  | 
										
| [41] |  
											  Yu X, Zhang X, Zhang Y, et al. Cytosolic TMEM88 promotes triple-negative breast cancer by interacting with Dvl[J]. Oncotarget, 2015,6(28):25034-25045. DOI: 10.18632/oncotarget.4379. 
											 												 doi: 10.18632/oncotarget.4379 pmid: 26325443  | 
										
| [42] |  
											  de Leon M, Cardenas H, Vieth E, et al. Transmembrane protein 88 (TMEM88) promoter hypomethylation is associated with platinum resistance in ovarian cancer[J]. Gynecol Oncol, 2016,142(3):539-547. DOI: 10.1016/j.ygyno.2016.06.017. 
											 												 doi: 10.1016/j.ygyno.2016.06.017 pmid: 27374141  | 
										
| [43] |  
											  Zhang X, Wan JX, Ke ZP, et al. TMEM88, CCL14 and CLEC3B as prognostic biomarkers for prognosis and palindromia of human hepatocellular carcinoma[J]. Tumour Biol, 2017,39(7):1010428317708900. DOI: 10.1177/1010428317708900. 
											 												 doi: 10.1177/1010428317708900 pmid: 28718365  | 
										
| [44] |  
											  Liu Z, An H, Song P, et al. Potential targets of TMEM176A in the growth of glioblastoma cells[J]. Onco Targets Ther, 2018,11:7763-7775. DOI: 10.2147/ott.S179725. 
											 												 doi: 10.2147/OTT.S179725 pmid: 30464524  | 
										
| [45] |  
											  Li H, Zhang M, Linghu E, et al. Epigenetic silencing of TMEM176A activates ERK signaling in human hepatocellular carcinoma[J]. Clin Epigenetics, 2018,10(1):137. DOI: 10.1186/s13148-018-0570-4. 
											 												 doi: 10.1186/s13148-018-0570-4 pmid: 30400968  | 
										
| [46] |  
											  Cuajungco MP, Podevin W, Valluri VK, et al. Abnormal accumulation of human transmembrane (TMEM)-176A and 176B proteins is associated with cancer pathology[J]. Acta Histochem, 2012,114(7):705-712. DOI: 10.1016/j.acthis.2011.12.006. 
											 												 doi: 10.1016/j.acthis.2011.12.006  | 
										
| [47] |  
											  Segovia M, Russo S, Jeldres M, et al. Targeting TMEM176B enhances antitumor immunity and augments the efficacy of immune checkpoint blockers by unleashing inflammasome activation[J]. Cancer Cell, 2019, 35(5):767-781.DOI: 10.1016/j.ccell.2019.04.003. 
											 												 doi: 10.1016/j.ccell.2019.04.003 pmid: 31085177  | 
										
| [1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. | 
| [2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. | 
| [3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. | 
| [4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. | 
| [5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. | 
| [6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. | 
| [7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. | 
| [8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. | 
| [9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. | 
| [10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. | 
| [11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. | 
| [12] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. | 
| [13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. | 
| [14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. | 
| [15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||
