[1] |
Chen LL . The biogenesis and emerging roles of circular RNAs[J]. Nat Rev Mol cell Biol, 2016,17(4):205-211. DOI: 10.1038/nrm.2015.32.
doi: 10.1038/nrm.2015.32
|
[2] |
Liu J, Liu T, Wang X , et al. Circles reshaping the RNA world: from waste to treasure[J]. Mol Cancer, 2017,16(1):58. DOI: 10.1186/s12943-017-0630-y.
doi: 10.1186/s12943-017-0630-y
|
[3] |
Meng S, Zhou H, Feng Z , et al. CircRNA: functions and properties of a novel potential biomarker for cancer[J]. Mol Cancer, 2017,16(1):94. DOI: 10.1186/s12943-017-0663-2.
doi: 10.1186/s12943-017-0663-2
|
[4] |
Shang Q, Yang Z, Jia R , et al. The novel roles of circRNAs in human cancer[J]. Mol Cancer, 2019,18(1):6. DOI: 10.1186/s12943-018-0934-6.
doi: 10.1186/s12943-018-0934-6
|
[5] |
Kleaveland B, Shi CY, Stefano J , et al. A network of noncoding regulatory RNAs acts in the mammalian brain[J]. Cell, 2018, 174(2): 350-362.e17. DOI: 10.1016/j.cell.2018.05.022.
doi: 10.1016/j.cell.2018.05.022
|
[6] |
Yu CY, Kuo HC . The emerging roles and functions of circular RNAs and their generation[J]. J Biomed Sci, 2019,26(1):29. DOI: 10.1186/s12929-019-0523-z.
doi: 10.1186/s12929-019-0523-z
|
[7] |
Du WW, Yang W, Chen Y , et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses[J]. Eur Heart J, 2016,38(18):1402-1412. DOI: 10.1093/eurheartj/ehw001.
|
[8] |
Yang Y, Gao X, Zhang M , et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis[J]. J Natl Cancer Inst, 2018,110(3). DOI: 10.1093/jnci/djx166.
|
[9] |
Wang D, Yang S, Wang H , et al. The progress of circular RNAs in various tumors[J]. Am J Transl Res, 2018,10(6):1571-1582.
|
[10] |
Wei Y, Chen X, Liang C , et al. A noncoding regulatory RNAs network driven by circ-CDYL acts specifically in the early stages hepatocellular carcinoma[J]. Hepatology, 2020,71(1):130-147. DOI: 10.1002/hep.30795.
doi: 10.1002/hep.v71.1
|
[11] |
Gavande NS, Vandervere-Carozza PS, Hinshaw HD , et al. DNA repair targeted therapy: the past or future of cancer treatment?[J]. Pharmacol Ther, 2016,160:65-83. DOI: 10.1016/j.pharmthera.2016.02.003.
doi: 10.1016/j.pharmthera.2016.02.003
|
[12] |
Yin JY, Zhang JT, Zhang W , et al. eIF3a: a new anticancer drug target in the eIF family[J]. Cancer Lett, 2018,412:81-87. DOI: 10.1016/j.canlet.2017.09.055.
doi: 10.1016/j.canlet.2017.09.055
|
[13] |
Fang C, Chen YX, Wu NY , et al. MiR-488 inhibits proliferation and cisplatin sensibility in non-small-cell lung cancer (NSCLC) cells by activating the eIF3a-mediated NER signaling pathway[J]. Sci Rep, 2017,7:40384. DOI: 10.1038/srep40384.
doi: 10.1038/srep40384
|
[14] |
Huang MS, Yuan FQ, Gao Y , et al. Circular RNA screening from EIF3a in lung cancer[J]. Cancer Med, 2019,8(9):4159-4168. DOI: 10.1002/cam4.2338.
|
[15] |
Su Y, Yang W, Jiang N , et al. Hypoxia-elevated circELP3 contributes to bladder cancer progression and cisplatin resistance[J]. Int J Biol Sci, 2019,15(2):441-452. DOI: 10.7150/ijbs.26826.
doi: 10.7150/ijbs.26826
|
[16] |
Manic G, Sistigu A, Corradi F , et al. Replication stress response in cancer stem cells as a target for chemotherapy[J]. Semin Cancer Biol, 2018,53:31-41. DOI: 10.1016/j.semcancer.2018.08.003.
doi: 10.1016/j.semcancer.2018.08.003
|
[17] |
Sang Y, Chen B, Song X , et al. CircRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer[J]. Mol Ther, 2019,27(9):1638-1652. DOI: 10.1016/j.ymthe.2019.05.011.
doi: 10.1016/j.ymthe.2019.05.011
|
[18] |
Liu Y, Ao X, Ding W , et al. Critical role of FOXO3a in carcinogenesis[J]. Mol Cancer, 2018,17(1):104. DOI: 10.1186/s12943-018-0856-3.
doi: 10.1186/s12943-018-0856-3
|
[19] |
Rathore R, McCallum JE, Varghese E, et al. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs)[J]. Apoptosis, 2017,22(7):898-919. DOI: 10.1007/s10495-017-1375-1.
doi: 10.1007/s10495-017-1375-1
|
[20] |
Shang J, Chen WM, Wang ZH , et al. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis[J]. Exp Hematol, 2019,70:42-54, e3. DOI: 10.1016/j.exphem.2018.10.011.
doi: 10.1016/j.exphem.2018.10.011
|
[21] |
Abu N, Hon KW, Jeyaraman S , et al. Identification of differentially expressed circular RNAs in chemoresistant colorectal cancer[J]. Epigenomics, 2019,11(8):875-884. DOI: 10.2217/epi-2019-0042.
doi: 10.2217/epi-2019-0042
|
[22] |
Zhou Y, Zheng X, Xu B , et al. Circular RNA hsa_circ_0004015 regulates the proliferation, invasion, and TKI drug resistance of non-small cell lung cancer by miR-1183/PDPK1 signaling pathway[J]. Biochem Biophys Res Commun, 2019,508(2):527-535. DOI: 10.1016/j.bbrc.2018.11.157.
doi: 10.1016/j.bbrc.2018.11.157
|
[23] |
Bermúdez M, Aguilar-Medina M, Lizárraga-Verdugo E , et al. LncRNAs as regulators of autophagy and drug resistance in colorectal cancer[J]. Front Oncol, 2019,9:1008. DOI: 10.3389/fonc.2019.01008.
doi: 10.3389/fonc.2019.01008
|
[24] |
Miao Y, Zheng W, Li N , et al. MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway[J]. Sci Rep, 2017,7:41942. DOI: 10.1038/srep41942.
doi: 10.1038/srep41942
|
[25] |
Li D, Mullinax JE, Aiken T , et al. Loss of PDPK1 abrogates resistance to gemcitabine in label-retaining pancreatic cancer cells[J]. BMC Cancer, 2018,18(1):772. DOI: 10.1186/s12885-018-4690-1.
doi: 10.1186/s12885-018-4690-1
|
[26] |
Zhu KP, Ma XL, Zhang CL . Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1[J]. Int J Biol Sci, 2018,14(3):321-330. DOI: 10.7150/ijbs.24360.
doi: 10.7150/ijbs.24360
|
[27] |
Yu W, Peng W, Sha H , et al. Hsa_circ_0003998 promotes chemoresistance via modulation of miR-326 in lung adenocarcinoma cells[J]. Oncol Res, 2019,27(5):623-628. DOI: 10.3727/096504018X15420734828058.
doi: 10.3727/096504018X15420734828058
|
[28] |
Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: multifaceted players with incipient potentialities in cancer[J]. Semin Cancer Biol, 2019, Inpress. DOI: 10.1016/j.semcancer.2019.10.004.
|
[29] |
Du Y, Shen L, Zhang W , et al. Functional analyses of microRNA-326 in breast cancer development[J]. Biosci Rep, 2019, 39(7). pii: BSR20190787. DOI: 10.1042/BSR20190787.
|
[30] |
Allocati N, Masulli M, Di Ilio C , et al. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases[J]. Oncogenesis, 2018,7(1):8. DOI: 10.1038/s41389-017-0025-3.
doi: 10.1038/s41389-017-0025-3
|
[31] |
Zhu KP, Zhang CL, Ma XL , et al. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance[J]. Mol Ther, 2019,27(3):518-530. DOI: 10.1016/j.ymthe.2019.01.001.
doi: 10.1016/j.ymthe.2019.01.001
|