[1] Keith B, Johnson RS, Simon MC. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression[J]. Nat Rev Cancer, 2012, 12(1): 922. DOI: 10.1038/nrc3183.
[2] Tndevold E, Eriksen J, Jansen E. Observations on long bone medullary pressure in relation to mean arterial blood pressure in the anaesthetized dog[J]. Acta Orthop Scand, 1979, 50(5): 527531.
[3] Watanabe Y, Terashima Y, Takenaka N, et al. Prediction of avascular necrosis of the femoral head by measuring intramedullary oxygen tension after femoral neck fracture[J]. J Orthop Trauma, 2007, 21(7): 456461. DOI: 10.1097/BOT.0b013e318126bb56.
[4] Colla S, Storti P, Donofrio G, et al. Low bone marrow oxygen tension and hypoxiainducible factor1α overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138(+) cells[J]. Leukemia, 2010, 24(11): 19671970. DOI: 10.1038/leu.2010.193.
[5] 李斑斑, 郭冬梅, 滕清良. 乏氧及Notch1在多发性骨髓瘤中作用的研究进展[J]. 国际肿瘤学杂志, 2013, 40(7): 542546. DOI: 10.3760/cma.j.issn.1673422x.2013.07.021
[6] Zhang P, Yao Q, Lu L, et al. Hypoxiainducible factor 3 is an oxygendependent transcription activator and regulates a distinct transcriptional response to hypoxia[J]. Cell Rep, 2014, 6(6): 11101121. DOI: 10.1016/j.celrep.2014.02.011.
[7] Koh MY, Powis G. Passing the baton: the HIF Switch[J]. Trends Biochem Sci, 2012, 37(9): 364372. DOI: 10.1016/j.tibs.2012.06.004.
[8] Hu J, Handisides DR, Van Valckenborgh E, et al. Targeting the multiple myeloma hypoxic niche with TH302, a hypoxiaactivated prodrug[J]. Blood, 2010, 116(9): 15241527. DOI: 10.1182/blood201002269126.
[9] Giatromanolaki A, Bai M, Margaritis D, et al. Hypoxia and activated VEGF/receptor pathway in multiple myeloma[J]. Anticancer Res, 2010, 30(7): 28312836.
[10] Borsi E, Terragna C, Brioli A, et al. Therapeutic targeting of hypoxia and hypoxiainducible factor 1 alpha in multiple myeloma[J]. Transl Res, 2015, 165(6): 641650. DOI: 10.1016/j.trsl.2014.12.001.
[11] Martin SK, Diamond P, Gronthos S, et al. The emerging role of hypoxia, HIF1 and HIF2 in multiple myeloma[J]. Leukemia, 2011, 25(10): 15331542. DOI: 10.1038/leu.2011.122.
[12] Borsi E, Perrone G, Terragna C, et al. Hypoxia inducible factor1 alpha as a therapeutic target in multiple myeloma[J]. Oncotarget, 2014, 5(7): 17791792. DOI: 10.18632/oncotarget.1736.
[13] Umezu T, Tadokoro H, Azuma K, et al. Exosomal miR135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factorinhibiting HIF1[J]. Blood, 2014, 124(25): 37483757. DOI: 10.1182/blood201405576116.
[14] Martin SK, Diamond P, Williams SA, et al. Hypoxiainducible factor2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells[J]. Haematologica, 2010, 95(5): 776784. DOI: 10.3324/haematol.2009.015628.
[15] Storti P, Bolzoni M, Donofrio G, et al. Hypoxiainducible factor (HIF)1α suppression in myeloma cells blocks tumoral growth in vivo inhibiting angiogenesis and bone destruction[J]. Leukemia, 2013, 27(8): 16971706. DOI: 10.1038/leu.2013.24.
[16] Maiso P, Huynh D, Moschetta M, et al. Metabolic signature identifies novel targets for drug resistance in multiple myeloma[J]. Cancer Res, 2015, 75(10): 20712082. DOI: 10.1158/00085472.CAN143400.
[17] Bianchi G, Ghobrial IM. Molecular mechanisms of effectiveness of novel therapies in multiple myeloma[J]. Leuk Lymphoma, 2013, 54(2): 229241. DOI: 10.3109/10428194.2012.706287.
[18] Ria R, Catacchio I, Berardi S, et al. HIF1α of bone marrow endothelial cells implies relapse and drug resistance in patients with multiple myeloma and may act as a therapeutic target[J]. Clin Cancer Res, 2014, 20(4): 847858. DOI: 10.1158/10780432.CCR131950.
[19] Azab AK, Hu J, Quang P, et al. Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transitionlike features[J]. Blood, 2012, 119(24): 57825794. DOI: 10.1182/blood201109380410.
[20] Rohwer N, Cramer T. Hypoxiamediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways[J]. Drug Resist Updat, 2011, 14(3): 191201. DOI: 10.1016/j.drup.2011.03.001.
[21] Meng F, Evans JW, Bhupathi D, et al. Molecular and cellular pharmacology of the hypoxiaactivated prodrug TH302[J]. Mol Cancer Ther, 2012, 11(3): 740751. DOI: 10.1158/15357163.MCT110634.
[22] Doedens AL, Stockmann C, Rubinstein MP, et al. Macrophage expression of hypoxiainducible factor1 alpha suppresses Tcell function and promotes tumor progression[J]. Cancer Res, 2010, 70(19): 74657475. DOI: 10.1158/00085472.CAN101439.
[23] Hu J, Van Valckenborgh E, Xu D, et al. Synergistic induction of apoptosis in multiple myeloma cells by bortezomib and hypoxiaactivated prodrug TH302, in vivo and in vitro[J]. Mol Cancer Ther, 2013, 12(9): 17631773. DOI: 10.1158/15357163.MCT130123.
[24] Raimondi L, Amodio N, Di Martino MT, et al. Targeting of multiple myelomarelated angiogenesis by miR199a5p mimics: in vitro and in vivo antitumor activity[J]. Oncotarget, 2014, 5(10): 30393054. DOI: 10.18632/oncotarget.1747.
[25] Borsi E, Perrone G, Terragna C, et al. HIF1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment[J]. Exp Cell Res, 2014, 328(2): 444455. DOI: 10.1016/j.yexcr.2014.09.018. |