[1] Sciacovelli M, Frezza C. Metabolic reprogramming and epithelialtomesenchymal transition in cancer[J]. FEBS J, 2017, 284(19): 31323144. DOI: 10.1111/febs.14090.
[2] Hakimi AA, Reznik E, Lee CH, et al. An integrated metabolic atlas of clear cell renal cell carcinoma[J]. Cancer Cell, 2016, 29(1): 104116. DOI: 10.1016/j.ccell.2015.12.004.
[3] Lameirinhas A, MirandaGonalves V, Henrique R, et al. The complex interplay between metabolic reprogramming and epigenetic alterations in renal cell carcinoma[J]. Genes (Basel), 2019, 10(4). pii: E264. DOI: 10.3390/genes10040264.
[4] Tarade D, Ohh M. The HIF and other quandaries in VHL disease[J]. Oncogene, 2018, 37(2): 139147. DOI: 10.1038/onc.2017.338.
[5] Chappell JC, Payne LB, Rathmell WK. Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers[J]. J Clin Invest, 2019, 129(2): 442451. DOI: 10.1172/JCI120855.
[6] Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma[J]. Nature, 2013, 499(7456): 4349. DOI: 10.1038/nature12222.
[7] Wettersten HI, Hakimi AA, Morin D, et al. Gradedependent metabolic reprogramming in kidney cancer revealed by combined proteomics and metabolomics analysis[J]. Cancer Res, 2015, 75(12): 25412552. DOI: 10.1158/00085472.CAN141703.
[8] Crooks DR, Linehan WM. The Warburg effect in hominis: isotoperesolved metabolism in ccRCC[J]. Nat Rev Urol, 2018, 15(12): 731732. DOI: 10.1038/s4158501801101.
[9] Ambrosetti D, Dufies M, Dadone B, et al. The two glycolytic markers GLUT1 and MCT1 correlate with tumor grade and survival in clearcell renal cell carcinoma[J]. PLoS One, 2018, 13(2): e0193477. DOI: 10.1371/journal.pone.0193477.
[10] Courtney KD, Bezwada D, Mashimo T, et al. Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo[J]. Cell Metab, 2018, 28(5): 793800.e2. DOI: 10.1016/j.cmet.2018.07.020.
[11] Dong B, Gao Y, Kang X, et al. SENP1 promotes proliferation of clear cell renal cell carcinoma through activation of glycolysis[J]. Oncotarget, 2016, 7(49): 8043580449. DOI: 10.18632/oncotarget.12606.
[12] Gameiro PA, Yang, Metelo AM, et al. In vivo HIFmediated reductive carboxylation is regulated by citrate levels and sensitizes VHLdeficient cells to glutamine deprivation[J]. Cell Metab, 2013, 17(3): 372385. DOI: 10.1016/j.cmet.2013.02.002.
[13] Shu X, Gu J, Huang M, et al. Germline genetic variants in somatically significantly mutated genes in tumors are associated with renal cell carcinoma risk and outcome[J]. Carcinogenesis, 2018, 39(6): 752757. DOI: 10.1093/carcin/bgy021.
[14] Schdel J, Grampp S, Maher ER, et al. Hypoxia, hypoxiainducible transcription factors, and renal cancer[J]. Eur Urol, 2016, 69(4): 646657. DOI: 10.1016/j.eururo.2015.08.007.
[15] Miikkulainen P, Hgel H, Seyednasrollah F, et al. Hypoxiainducible factor (HIF)prolyl hydroxylase 3 (PHD3) maintains high HIF2A mRNA levels in clear cell renal cell carcinoma[J]. J Biol Chem, 2019, 294(10): 37603771. DOI: 10.1074/jbc.RA118.004902.
[16] Scheuermann TH, Li Q, Ma HW, et al. Allosteric inhibition of hypoxia inducible factor2 with small molecules[J]. Nat Chem Biol, 2013, 9(4): 271276. DOI: 10.1038/nchembio.1185.
[17] Cho H, Du X, Rizzi JP, et al. Ontarget efficacy of a HIF2α antagonist in preclinical kidney cancer models[J]. Nature, 2016, 539(7627): 107111. DOI: 10.1038/nature19795.
[18] Chen W, Hill H, Christie A, et al. Targeting renal cell carcinoma with a HIF2 antagonist[J]. Nature, 2016, 539(7627): 112117. DOI: 10.1038/nature19796.
[19] Wallace EM, Rizzi JP, Han G, et al. A smallmolecule antagonist of HIF2α is efficacious in preclinical models of renal cell carcinoma[J]. Cancer Res, 2016, 76(18): 54915500. DOI: 10.1158/00085472.CAN160473.
[20] Peloton Therapeutics, Inc. A phase 1, doseescalation trial of PT2385 tablets in patients with advanced clear cell renal cell carcinoma [EB/OL]. Clinicaltrials.gov. (20181115) [20190401]. https://www.clinicaltrials.gov/ct2/show/NCT02293980?term=02293980&rank=1.
[21] Lucarelli G, Rutigliano M, Sallustio F, et al. Integrated multiomics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma[J]. Aging (Albany NY), 2018, 10(12): 39573985. DOI: 10.18632/aging.101685.
[22] Abu Aboud O, Donohoe D, Bultman S, et al. PPARα inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth[J]. Am J Physiol Cell Physiol, 2015, 308(11): C890C898. DOI: 10.1152/ajpcell.00322.2014.
[23] Shroff EH, Eberlin LS, Dang VM, et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism[J]. Proc Natl Acad Sci U S A, 2015, 112(21): 65396544. DOI: 10.1073/pnas.1507228112.
[24] Abu Aboud O, Habib SL, Trott J, et al. Glutamine addiction in kidney cancer suppresses oxidative stress and can be exploited for realtime imaging[J]. Cancer Res, 2017, 77(23): 67466758. DOI: 10.1158/00085472.CAN170930.
[25] Emberley E, Bennett M, Chen J, et al. CB839, a selective glutaminase inhibitor, has antitumor activity in renal cell carcinoma and synergizes with cabozantinib and everolimus[EB/OL]. Keystone Symposia, Tumor Metabolism: Mechanisms and Targets, Whistler Canada. 2017. [20190401]. https://www.calithera.com/wpcontent/uploads/2017/12/03.2017KeystoneposterEmberley2017.pdf.
[26] Hoerner CR, Chen VJ, Fan AC. The ‘Achilles Heel’ of metabolism in renal cell carcinoma: glutaminase inhibition as a rational treatment strategy[J]. Kidney Cancer, 2019, 3(1): 1529. DOI: 10.3233/KCA180043.
[27] Calithera Biosciences, Inc. Phase 2 study comparing CB839 in combination with everolimus (CBE) vs. placebo with everolimus (PboE) in patients with advanced or metastatic RCC[EB/OL]. Clinical trials.gov. (20190215) [20190401]. https://www.clinicaltrials.gov/ct2/show/NCT03163667?term=03163667&rank=1.
[28] Sadok I, Gamian A, Staniszewska MM. Chromatographic analysis of tryptophan metabolites[J]. J Sep Sci, 2017, 40(15): 30203045. DOI: 10.1002/jssc.201700184.
[29] Lucarelli G, Rutigliano M, Ferro M, et al. Activation of the kynurenine pathway predicts poor outcome in patients with clear cell renal cell carcinoma[J]. Urol Oncol, 2017, 35(7): 461.e15461.e27. DOI: 10.1016/j.urolonc.2017.02.011.
[30] Mondanelli G, Bianchi R, Pallotta MT, et al. A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells[J]. Immunity, 2017, 46(2): 233244. DOI: 10.1016/j.immuni.2017.01.005.
[31] Amobi A, Qian F, Lugade AA, et al. Tryptophan catabolism and cancer immunotherapy targeting IDO mediated immune suppression[J]. Adv Exp Med Biol, 2017, 1036: 129144. DOI: 10.1007/9783319675770_9.
[32] Trott JF, Kim J, Abu Aboud O, et al. Inhibiting tryptophan metabolism enhances interferon therapy in kidney cancer[J]. Oncotarget, 2016, 7(41): 6654066557. DOI: 10.18632/oncotarget.11658.
[33] Jochems C, Fantini M, Fernando RI, et al. The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigenspecific T cells[J]. Oncotarget, 2016, 7(25): 3776237772. DOI: 10.18632/oncotarget.9326.
[34] Sheridan C. IDO inhibitors move center stage in immunooncology[J]. Nat Biotechnol, 2015, 33(4): 321322. DOI: 10.1038/nbt0415321.
[35] NayakKapoor A, Hao Z, Sadek R, et al. Phase Ia study of the indoleamine 2,3dioxygenase 1 (IDO1) inhibitor navoximod (GDC0919) in patients with recurrent advanced solid tumors[J]. J Immunother Cancer, 2018, 6(1): 61. DOI: 10.1186/s4042501803519.
[36] Incyte Corporation. A study of epacadostat (INCB024360) in combination with durvalumab (MEDI4736) in subjects with selected advanced solid tumors (ECHO203)[EB/OL]. Clinical trials.gov. (20190410) [20190401]. https://www.clinicaltrials.gov/ct2/show/NCT02318277?term=02318277&rank=1.
[37] Jahani M, Noroznezhad F, Mansouri K. Arginine: challenges and opportunities of this twofaced molecule in cancer therapy[J]. Biomed Pharmacother, 2018, 102: 594601. DOI: 10.1016/j.biopha.2018.02.109.
[38] Ochocki JD, Khare S, Hess M, et al. Arginase 2 suppresses renal carcinoma progression via biosynthetic cofactor pyridoxal phosphate depletion and increased polyamine toxicity[J]. Cell Metab, 2018, 27(6): 12631280.e6. DOI: 10.1016/j.cmet.2018.04.009.
[39] Burrows N, Cane G, Robson M, et al. Hypoxiainduced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADIPEG20)[J]. Sci Rep, 2016, 6: 22950. DOI: 10.1038/srep22950.
[40] Kremer JC, Prudner BC, Lange SES, et al. Arginine deprivation inhibits the Warburg effect and upregulates glutamine anaplerosis and serine biosynthesis in ASS1deficient cancers[J]. Cell Rep, 2017, 18(4): 9911004. DOI: 10.1016/j.celrep.2016.12.077.
[41] Polaris Group. Study ADIPEG 20 plus pembrolizumab in advanced solid cancers[EB/OL]. Clinical trials.gov. (20180222) [20190401]. https://www.clinicaltrials.gov/ct2/show/NCT03254732?term=03254732&rank=1. |