国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (12): 794-797.doi: 10.3760/cma.j.cn371439-20240522-00135
收稿日期:
2024-05-22
修回日期:
2024-06-11
出版日期:
2024-12-08
发布日期:
2025-01-07
通讯作者:
宋启斌
E-mail:qibinsong@whu.edu.cn
Received:
2024-05-22
Revised:
2024-06-11
Online:
2024-12-08
Published:
2025-01-07
Contact:
Song Qibin
E-mail:qibinsong@whu.edu.cn
摘要:
骨是前列腺癌最主要的转移部位,前列腺癌骨转移严重影响患者生存预后与生命质量。外泌体是由细胞分泌的具有脂质双分子层结构的囊泡,在细胞间的通讯中发挥重要作用。外泌体可调控前列腺癌细胞在骨组织中的特异性定植,塑造有利于肿瘤细胞生存的转移前生态位,并调节骨的免疫微环境。同时,外泌体也可调节成骨细胞和破骨细胞的分化与成熟过程,从而导致骨重塑。进一步了解外泌体在前列腺癌骨转移中的作用,有助于开发延缓骨转移进展的新靶点。
黄华玉, 宋启斌. 外泌体在前列腺癌骨转移中的作用[J]. 国际肿瘤学杂志, 2024, 51(12): 794-797.
Huang Huayu, Song Qibin. Role of exosomes in bone metastasis of prostate cancer[J]. Journal of International Oncology, 2024, 51(12): 794-797.
[1] | Bergengren O, Pekala KR, Matsoukas K, et al. 2022 update on prostate cancer epidemiology and risk factors—a systematic review[J]. Eur Urol, 2023, 84(2): 191-206. DOI: 10.1016/j.eururo.2023.04.021. |
[2] | Liu JZ, Dong L, Zhu YJ, et al. Prostate cancer treatment—China's perspective[J]. Cancer Lett, 2022, 550: 215927. DOI: 10.1016/j.canlet.2022.215927. |
[3] |
Ali A, Hoyle A, Haran ÁM, et al. Association of bone metastatic burden with survival benefit from prostate radiotherapy in patients with newly diagnosed metastatic prostate cancer: a secondary analysis of a randomized clinical trial[J]. JAMA Oncol, 2021, 7(4): 555-563. DOI: 10.1001/jamaoncol.2020.7857.
pmid: 33599706 |
[4] | Krylova SV, Feng D. The machinery of exosomes: biogenesis, release, and uptake[J]. Int J Mol Sci, 2023, 24(2): 1337. DOI: 10.3390/ijms24021337. |
[5] | Lv T, Li Z, Wang D, et al. Role of exosomes in prostate cancer bone metastasis[J]. Arch Biochem Biophys, 2023, 748: 109784. DOI: 10.1016/j.abb.2023.109784. |
[6] | Akoto T, Saini S. Role of exosomes in prostate cancer metastasis[J]. Int J Mol Sci, 2021, 22(7): 3528. DOI: 10.3390/ijms22073528. |
[7] | Jaudon F, Thalhammer A, Cingolani LA. Integrin adhesion in brain assembly: from molecular structure to neuropsychiatric disorders[J]. Eur J Neurosci, 2021, 53(12): 3831-3850. DOI: 10.1111/ejn.14859. |
[8] | Geng X, Chang B, Shan J. Role and correlation of exosomes and integrins in bone metastasis of prostate cancer[J]. Andrologia, 2022, 54(10): e14550. DOI: 10.1111/and.14550. |
[9] |
Fedele C, Singh A, Zerlanko BJ, et al. The αvβ6 integrin is transferred intercellularly via exosomes[J]. J Biol Chem, 2015, 290(8): 4545-4551. DOI: 10.1074/jbc.C114.617662.
pmid: 25568317 |
[10] |
Connell B, Kopach P, Ren W, et al. Aberrant integrin αv and α5 expression in prostate adenocarcinomas and bone-metastases is consistent with a bone-colonizing phenotype[J]. Transl Androl Urol, 2020, 9(4): 1630-1638. DOI: 10.21037/tau-19-763.
pmid: 32944524 |
[11] | Mao L, Wang L, Xu J, et al. The role of integrin family in bone metabolism and tumor bone metastasis[J]. Cell Death Discov, 2023, 9(1): 119. DOI: 10.1038/s41420-023-01417-x. |
[12] | Henrich SE, McMahon KM, Plebanek MP, et al. Prostate cancer extracellular vesicles mediate intercellular communication with bone marrow cells and promote metastasis in a cholesterol-dependent manner[J]. J Extracell Vesicles, 2020, 10(2): e12042. DOI: 10.1002/jev2.12042. |
[13] |
Wortzel I, Dror S, Kenific CM, et al. Exosome-mediated metastasis: communication from a distance[J]. Dev Cell, 2019, 49(3): 347-360. DOI: 10.1016/j.devcel.2019.04.011.
pmid: 31063754 |
[14] | Yu L, Sui B, Fan W, et al. Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p[J]. J Extracell Vesicles, 2021, 10(3): e12056. DOI: 10.1002/jev2.12056. |
[15] | Niland S, Riscanevo AX, Eble JA. Matrix metalloproteinases shape the tumor microenvironment in cancer progression[J]. Int J Mol Sci, 2021, 23(1): 146. DOI: 10.3390/ijms23010146. |
[16] | Deep G, Jain A, Kumar A, et al. Exosomes secreted by prostate cancer cells under hypoxia promote matrix metalloproteinases activity at pre-metastatic niches[J]. Mol Carcinog, 2020, 59(3): 323-332. DOI: 10.1002/mc.23157. |
[17] | Dai J, Escara-Wilke J, Keller JM, et al. Primary prostate cancer educates bone stroma through exosomal pyruvate kinase M2 to promote bone metastasis[J]. J Exp Med, 2019, 216(12): 2883-2899. DOI: 10.1084/jem.20190158. |
[18] |
Probert C, Dottorini T, Speakman A, et al. Communication of prostate cancer cells with bone cells via extracellular vesicle RNA; a potential mechanism of metastasis[J]. Oncogene, 2019, 38(10): 1751-1763. DOI: 10.1038/s41388-018-0540-5.
pmid: 30353168 |
[19] | Yang Z, Chen JQ, Liu TJ, et al. Knocking down AR promotes osteoblasts to recruit prostate cancer cells by altering exosomal circ-DHPS/miR-214-3p/CCL5 pathway[J]. Asian J Androl, 2024, 26(2): 195-204. DOI: 10.4103/aja202351. |
[20] | 李京羿, 陈家久, 李耀明, 等. 成骨细胞外泌体对前列腺癌细胞生物学特性的影响及潜在机制研究[J]. 陆军军医大学学报, 2024, 46(6): 544-555. DOI: 10.16016/j.2097-0927.202311002. |
[21] |
Zhang W, Zhong W, Wang B, et al. ICAM-1-mediated adhesion is a prerequisite for exosome-induced T cell suppression[J]. Dev Cell, 2022, 57(3): 329-343.e7. DOI: 10.1016/j.devcel.2022.01.002.
pmid: 35085484 |
[22] |
Lu H, Bowler N, Harshyne LA, et al. Exosomal αvβ6 integrin is required for monocyte M2 polarization in prostate cancer[J]. Matrix Biol, 2018, 70: 20-35. DOI: 10.1016/j.matbio.2018.03.009.
pmid: 29530483 |
[23] |
Xu W, Lu M, Xie S, et al. Endoplasmic reticulum stress promotes prostate cancer cells to release exosome and up-regulate PD-L1 expression via PI3K/Akt signaling pathway in macrophages[J]. J Cancer, 2023, 14(6): 1062-1074. DOI: 10.7150/jca.81933.
pmid: 37151385 |
[24] |
Hu K, Shang Z, Yang X, et al. Macrophage polarization and the regulation of bone immunity in bone homeostasis[J]. J Inflamm Res, 2023, 16: 3563-3580. DOI: 10.2147/JIR.S423819.
pmid: 37636272 |
[25] |
Guan H, Peng R, Fang F, et al. Tumor-associated macrophages promote prostate cancer progression via exosome-mediated miR-95 transfer[J]. J Cell Physiol, 2020, 235(12): 9729-9742. DOI: 10.1002/jcp.29784.
pmid: 32406953 |
[26] |
Xu Y, Song G, Xie S, et al. The roles of PD-1/PD-L1 in the prognosis and immunotherapy of prostate cancer[J]. Mol Ther, 2021, 29(6): 1958-1969. DOI: 10.1016/j.ymthe.2021.04.029.
pmid: 33932597 |
[27] | Yin Z, Yu M, Ma T, et al. Mechanisms underlying low-clinical responses to PD-1/PD-L1 blocking antibodies in immunotherapy of cancer: a key role of exosomal PD-L1[J]. J Immunother Cancer, 2021, 9(1): e001698. DOI: 10.1136/jitc-2020-001698. |
[28] | Li D, Zhou X, Xu W, et al. Prostate cancer cells synergistically defend against CD8+ T cells by secreting exosomal PD-L1[J]. Cancer Med, 2023, 12(15): 16405-16415. DOI: 10.1002/cam4.6275. |
[29] |
Poggio M, Hu T, Pai CC, et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory[J]. Cell, 2019, 177(2): 414-427.e13. DOI: 10.1016/j.cell.2019.02.016.
pmid: 30951669 |
[30] |
Vardaki I, Corn P, Gentile E, et al. Radium-223 treatment increases immune checkpoint expression in extracellular vesicles from the metastatic prostate cancer bone microenvironment[J]. Clin Cancer Res, 2021, 27(11): 3253-3264. DOI: 10.1158/1078-0432.CCR-20-4790.
pmid: 33753455 |
[31] | Elaasser B, Arakil N, Mohammad KS. Bridging the gap in understanding bone metastasis: a multifaceted perspective[J]. Int J Mol Sci, 2024, 25(5): 2846. DOI: 10.3390/ijms25052846. |
[32] | Kaplan Z, Zielske SP, Ibrahim KG, et al. Wnt and β-catenin signaling in the bone metastasis of prostate cancer[J]. Life (Basel), 2021, 11(10): 1099. DOI: 10.3390/life11101099. |
[33] |
Zeng F, Zhao C, Wang R, et al. Antagonizing exosomal miR-18a-5p derived from prostate cancer cells ameliorates metastasis-induced osteoblastic lesions by targeting Hist1h2bc and activating Wnt/β-catenin pathway[J]. Genes Dis, 2023, 10(4): 1626-1640. DOI: 10.1016/j.gendis.2022.06.007.
pmid: 37397518 |
[34] | Liu Y, Yang C, Chen S, et al. Cancer-derived exosomal miR-375 targets DIP2C and promotes osteoblastic metastasis and prostate cancer progression by regulating the Wnt signaling pathway[J]. Cancer Gene Ther, 2023, 30(3): 437-449. DOI: 10.1038/s41417-022-00563-1. |
[35] | Jiang T, Xia T, Qiao F, et al. Role and regulation of transcription factors in osteoclastogenesis[J]. Int J Mol Sci, 2023, 24(22): 16175. DOI: 10.3390/ijms242216175. |
[36] |
Mo C, Huang B, Zhuang J, et al. LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis[J]. Clin Transl Med, 2021, 11(8): e493. DOI: 10.1002/ctm2.493.
pmid: 34459124 |
[37] | Borel M, Lollo G, Magne D, et al. Prostate cancer-derived exosomes promote osteoblast differentiation and activity through phospholipase D2[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866( 12): 165919. DOI: 10.1016/j.bbadis.2020.165919. |
[38] | Roudier MP, Morrissey C, True LD, et al. Histopathological assess-ment of prostate cancer bone osteoblastic metastases[J]. J Urol, 2008, 180(3): 1154-1160. DOI: 10.1016/j.juro.2008.04.140. |
[39] | Satcher RL, Zhang XH. Evolving cancer-niche interactions and therapeutic targets during bone metastasis[J]. Nat Rev Cancer, 2022, 22(2): 85-101. DOI: 10.1038/s41568-021-00406-5. |
[40] | Urabe F, Kosaka N, Yamamoto Y, et al. Metastatic prostate cancer-derived extracellular vesicles facilitate osteoclastogenesis by transferring the CDCP1 protein[J]. J Extracell Vesicles, 2023, 12(3): e12312. DOI: 10.1002/jev2.12312. |
[1] | 刘琴, 张强强, 杨继元, 胡艳. 晚期前列腺癌双侧乳腺和腋窝淋巴结转移1例[J]. 国际肿瘤学杂志, 2024, 51(7): 478-480. |
[2] | 刘博翰, 黄俊星. 液体活检技术在食管鳞状细胞癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 105-108. |
[3] | 赵明君, 于春虎. 1990—2019年中国男性泌尿生殖系统肿瘤发病和死亡分析[J]. 国际肿瘤学杂志, 2024, 51(10): 632-638. |
[4] | 陈洁, 徐红, 陈雨甜. 肿瘤细胞源性外泌体在结直肠癌转移前微环境形成中的作用[J]. 国际肿瘤学杂志, 2024, 51(10): 650-654. |
[5] | 赵鑫, 范学武, 田龙, 胡逸民. 三维超声在前列腺癌图像引导放疗中的应用与评价研究[J]. 国际肿瘤学杂志, 2024, 51(1): 43-49. |
[6] | 张渊, 白芷玉, 李琪, 冯勤梅. 外泌体在恶性肿瘤中的研究现状[J]. 国际肿瘤学杂志, 2023, 50(8): 484-488. |
[7] | 金明, 甄书青, 王彦巧, 申红霞, 张爱民, 回丽妹. 丙泊酚对前列腺癌DU145细胞恶性生物学行为的影响及其机制[J]. 国际肿瘤学杂志, 2022, 49(8): 453-458. |
[8] | 李洪宇, 乌新林. 外泌体与结直肠癌肝转移[J]. 国际肿瘤学杂志, 2022, 49(12): 749-753. |
[9] | 王文浩, 孙希瑞, 刘锦, 孙秀梅. 肿瘤相关成纤维细胞在乳腺癌发生与发展中的作用[J]. 国际肿瘤学杂志, 2022, 49(10): 615-618. |
[10] | 张琬琛, 徐加杰, 张李卓, 葛明华. 外泌体-环状RNA在肿瘤诊治中的临床意义[J]. 国际肿瘤学杂志, 2021, 48(9): 549-552. |
[11] | 张永丽, 张若佳, 范焕彩, 葛鲁娜, 王林. TXNDC5-Prx2途径对前列腺癌细胞耐药性的调控[J]. 国际肿瘤学杂志, 2021, 48(8): 473-478. |
[12] | 杜霄, 周菊英. 局限性前列腺癌的立体定向放疗[J]. 国际肿瘤学杂志, 2021, 48(5): 313-316. |
[13] | 张小飞, 胡建鹏, 崔飞伦. 长非编码RNA在前列腺癌中的作用机制[J]. 国际肿瘤学杂志, 2021, 48(2): 117-120. |
[14] | 刘振华. 前列腺癌治疗的最新进展:肿瘤精准治疗时代下转移性去势抵抗性前列腺癌患者的管理[J]. 国际肿瘤学杂志, 2021, 48(11): 702-704. |
[15] | 吉春冬, 刘凯, 冯越, 汪飞, 杨军, 薛荣波. PSAMR联合PI-RADS v2评分对高级别前列腺癌的预测价值[J]. 国际肿瘤学杂志, 2020, 47(12): 723-727. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||