[1] |
Ribas A. Releasing the brakes on cancer immunotherapy[J]. N Engl J Med, 2015, 373(16): 1490-1492. DOI: 10.1056/NEJMp1510079.
doi: 10.1056/NEJMp1510079
|
[2] |
Mayes PA, Hance KW, Hoos A. The promise and challenges of immune agonist antibody development in cancer[J]. Nat Rev Drug Discov, 2018, 17(7): 509-527. DOI: 10.1038/nrd.2018.75.
doi: 10.1038/nrd.2018.75
pmid: 29904196
|
[3] |
Flemming A. Bispecific agonist boosts anti-tumour T cells via GITR[J]. Nat Rev Immunol, 2022, 22(4): 208. DOI: 10.1038/s41577-022-00708-1.
doi: 10.1038/s41577-022-00708-1
|
[4] |
Chan S, Belmar N, Ho S, et al. An anti-PD-1-GITR-L bispecific agonist induces GITR clustering-mediated T cell activation for cancer immunotherapy[J]. Nat Cancer, 2022, 3(3): 337-354. DOI: 10.1038/s43018-022-00334-9.
doi: 10.1038/s43018-022-00334-9
|
[5] |
Killock D. GITR agonism—combination is key[J]. Nat Rev Clin Oncol, 2019, 16(7): 402. DOI: 10.1038/s41571-019-0221-5.
doi: 10.1038/s41571-019-0221-5
pmid: 31065053
|
[6] |
He C, Maniyar RR, Avraham Y, et al. Therapeutic antibody activation of the glucocorticoid-induced TNF receptor by a clustering mechanism[J]. Sci Adv, 2022, 8(8): eabm4552. DOI: 10.1126/sciadv.abm4552.
doi: 10.1126/sciadv.abm4552
|
[7] |
Geva R, Voskoboynik M, Dobrenkov K, et al. First-in-human phase 1 study of MK-1248, an anti-glucocorticoid-induced tumor necrosis factor receptor agonist monoclonal antibody, as monotherapy or with pembrolizumab in patients with advanced solid tumors[J]. Cancer, 2020, 126(22): 4926-4935. DOI: 10.1002/cncr.33133.
doi: 10.1002/cncr.33133
|
[8] |
Morad G, Helmink BA, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade[J]. Cell, 2021, 184(21): 5309-5337. DOI: 10.1016/j.cell.2021.09.020.
doi: 10.1016/j.cell.2021.09.020
pmid: 34624224
|
[9] |
Duhen R, Ballesteros-Merino C, Frye AK, et al. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells[J]. Nat Commun, 2021, 12(1): 1047. DOI: 10.1038/s41467-021-21383-1.
doi: 10.1038/s41467-021-21383-1
pmid: 33594075
|
[10] |
Sagiv-Barfi I, Czerwinski DK, Shree T, et al. Intratumoral immunotherapy relies on B and T cell collaboration[J]. Sci Immunol, 2022, 7(71): eabn5859. DOI: 10.1126/sciimmunol.abn5859.
doi: 10.1126/sciimmunol.abn5859
|
[11] |
Chin SM, Kimberlin CR, Roe-Zurz Z, et al. Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab[J]. Nat Commun, 2018, 9(1): 4679. DOI: 10.1038/s41467-018-07136-7.
doi: 10.1038/s41467-018-07136-7
pmid: 30410017
|
[12] |
Segal NH, He AR, Doi T, et al. Phase Ⅰ study of single-agent utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in patients with advanced cancer[J]. Clin Cancer Res, 2018, 24(8): 1816-1823. DOI: 10.1158/1078-0432.CCR-17-1922.
doi: 10.1158/1078-0432.CCR-17-1922
pmid: 29549159
|
[13] |
You G, Lee Y, Kang YW, et al. B7-H3×4-1BB bispecific antibody augments antitumor immunity by enhancing terminally differentiated CD8+ tumor-infiltrating lymphocytes[J]. Sci Adv, 2021, 7(3): eaax3160. DOI: 10.1126/sciadv.aax3160.
doi: 10.1126/sciadv.aax3160
|
[14] |
Geuijen C, Tacken P, Wang LC, et al. A human CD137×PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade[J]. Nat Commun, 2021, 12(1): 4445. DOI: 10.1038/s41467-021-24767-5.
doi: 10.1038/s41467-021-24767-5
pmid: 34290245
|
[15] |
Claus C, Ferrara C, Xu W, et al. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy[J]. Sci Transl Med, 2019, 11(496): eaav5989. DOI: 10.1126/scitranslmed.aav5989.
doi: 10.1126/scitranslmed.aav5989
|
[16] |
Peng CW, Huggins MA, Wanhainen KM, et al. Engagement of the costimulatory molecule ICOS in tissues promotes establishment of CD8+ tissue-resident memory T cells[J]. Immunity, 2022, 55(1): 98-114.e5. DOI: 10.1016/j.immuni.2021.11.017.
doi: 10.1016/j.immuni.2021.11.017
|
[17] |
Garber K. Immune agonist antibodies face critical test[J]. Nat Rev Drug Discov, 2020, 19(1): 3-5. DOI: 10.1038/d41573-019-00214-5.
doi: 10.1038/d41573-019-00214-5
pmid: 31907434
|
[18] |
Kvedaraite E, Ginhoux F. Human dendritic cells in cancer[J]. Sci Immunol, 2022, 7(70): eabm9409. DOI: 10.1126/sciimmunol.abm9409.
doi: 10.1126/sciimmunol.abm9409
|
[19] |
Choi Y, Shi Y, Haymaker CL, et al. T-cell agonists in cancer immunotherapy[J]. J Immunother Cancer, 2020, 8(2): e000966. DOI: 10.1136/jitc-2020-000966.
doi: 10.1136/jitc-2020-000966
|
[20] |
Carmona J. Immunity boost against pancreatic cancer[J/OL]. Nat Med. [2021-03-03][2022-05-01]. https://pubmed.ncbi.nlm.nih.gov/33658709/. DOI: 10.1038/d41591-021-00012-w.
doi: 10.1038/d41591-021-00012-w
|
[21] |
O'Hara MH, O'Reilly EM, Varadhachary G, et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study[J]. Lancet Oncol, 2021, 22(1): 118-131. DOI: 10.1016/S1470-2045(20)30532-5.
doi: 10.1016/S1470-2045(20)30532-5
pmid: 33387490
|
[22] |
Bajor DL, Mick R, Riese MJ, et al. Long-term outcomes of a phase Ⅰ study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma[J]. Oncoimmunology, 2018, 7(10): e1468956. DOI: 10.1080/2162402X.2018.1468956.
doi: 10.1080/2162402X.2018.1468956
|
[23] |
Salomon R, Rotem H, Katzenelenbogen Y, et al. Bispecific antibodies increase the therapeutic window of CD40 agonists through selective dendritic cell targeting[J]. Nat Cancer, 2022, 3(3): 287-302. DOI: 10.1038/s43018-022-00329-6.
doi: 10.1038/s43018-022-00329-6
|
[24] |
Maskalenko NA, Zhigarev D, Campbell KS. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders[J]. Nat Rev Drug Discov, 2022, 21(8): 559-577. DOI: 10.1038/s41573-022-00413-7.
doi: 10.1038/s41573-022-00413-7
pmid: 35314852
|
[25] |
Wolf NK, Blaj C, Picton LK, et al. Synergy of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC Ⅰ-deficient and MHC Ⅰ+tumors[J]. Proc Natl Acad Sci U S A, 2022, 119(22): e2200568119. DOI: 10.1073/pnas.2200568119.
doi: 10.1073/pnas.2200568119
|
[26] |
Pan BS, Perera SA, Piesvaux JA, et al. An orally available non-nucleotide STING agonist with antitumor activity[J]. Science, 2020, 369(6506): eaba6098. DOI: 10.1126/science.aba6098.
doi: 10.1126/science.aba6098
|
[27] |
Gajewski TF, Higgs EF. Immunotherapy with a sting[J]. Science, 2020, 369(6506): 921-922. DOI: 10.1126/science.abc6622.
doi: 10.1126/science.abc6622
pmid: 32820113
|
[28] |
Gong N, Mitchell MJ. Lipid nanodiscs give cancer a STING[J]. Nat Mater, 2022, 21(6): 616-617. DOI: 10.1038/s41563-022-01270-w.
doi: 10.1038/s41563-022-01270-w
|
[29] |
Dane EL, Belessiotis-Richards A, Backlund C, et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity[J]. Nat Mater, 2022, 21(6): 710-720. DOI: 10.1038/s41563-022-01251-z.
doi: 10.1038/s41563-022-01251-z
|