国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (10): 635-638.doi: 10.3760/cma.j.cn371439-20220520-00127
收稿日期:
2022-05-20
修回日期:
2022-08-04
出版日期:
2022-10-08
发布日期:
2022-12-01
通讯作者:
赵雪梅
E-mail:zhaoxm@sdfmu.edu.cn
Received:
2022-05-20
Revised:
2022-08-04
Online:
2022-10-08
Published:
2022-12-01
Contact:
Zhao Xuemei
E-mail:zhaoxm@sdfmu.edu.cn
摘要:
DNA损伤修复(DDR)基因在肝癌中存在过表达的现象。研究发现,DDR与肝癌的发生与发展有密切的联系。DDR抑制剂与肝癌化疗、靶向治疗药物间存在协同作用,其可增强放疗的敏感性。部分DDR基因可作为肝癌预后评估的生物标志物。
狄伟华, 赵雪梅. DNA损伤修复在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(10): 635-638.
Di Weihua, Zhao Xuemei. Research progress on the relationship between DNA damage repair genes and liver cancer[J]. Journal of International Oncology, 2022, 49(10): 635-638.
[1] |
Gillman R, Lopes Floro K, Wankell M, et al. The role of DNA damage and repair in liver cancer[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(1): 188493. DOI: 10.1016/j.bbcan.2020.188493.
doi: 10.1016/j.bbcan.2020.188493 |
[2] |
Lin J, Shi J, Guo H, et al. Alterations in DNA damage repair genes in primary liver cancer[J]. Clin Cancer Res, 2019, 25(15): 4701-4711. DOI: 10.1158/1078-0432.CCR-19-0127.
doi: 10.1158/1078-0432.CCR-19-0127 pmid: 31068370 |
[3] |
Xiong Y, Zhang Q, Ye J, et al. Associations between three XRCC1 polymorphisms and hepatocellular carcinoma risk: a meta-analysis of case-control studies[J]. PLoS One, 2018, 13(11): e0206853. DOI: 10.1371/journal.pone.0206853.
doi: 10.1371/journal.pone.0206853 |
[4] |
Kumar N, Raja S, Van Houten B. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage[J]. Nucleic Acids Res, 2020, 48(20): 11227-11243. DOI: 10.1093/nar/gkaa777.
doi: 10.1093/nar/gkaa777 pmid: 33010169 |
[5] |
Zhuo Z, Miao L, Hua W, et al. Genetic variations in nucleotide excision repair pathway genes and hepatoblastoma susceptibility[J]. Int J Cancer, 2021, 149(9): 1649-1658. DOI: 10.1002/ijc.33722.
doi: 10.1002/ijc.33722 |
[6] |
Saha J, Bae J, Wang SY, et al. Ablating putative Ku70 phosphorylation sites results in defective DNA damage repair and spontaneous induction of hepatocellular carcinoma[J]. Nucleic Acids Res, 2021, 49(17): 9836-9850. DOI: 10.1093/nar/gkab743.
doi: 10.1093/nar/gkab743 pmid: 34428289 |
[7] |
Yue X, Bai C, Xie D, et al. DNA-PKcs: a multi-faceted player in DNA damage response[J]. Front Genet, 2020, 11: 607428. DOI: 10.3389/fgene.2020.607428.
doi: 10.3389/fgene.2020.607428 |
[8] |
Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks[J]. J Biol Chem, 2018, 293(27): 10512-10523. DOI: 10.1074/jbc.TM117.000374.
doi: 10.1074/jbc.TM117.000374 pmid: 29247009 |
[9] |
Ma M, Rodriguez A, Sugimoto K. Activation of ATR-related protein kinase upon DNA damage recognition[J]. Curr Genet, 2020, 66(2): 327-333. DOI: 10.1007/s00294-019-01039-w.
doi: 10.1007/s00294-019-01039-w pmid: 31624858 |
[10] |
Ge C, Vilfranc CL, Che L, et al. The BRUCE-ATR signaling axis is required for accurate DNA replication and suppression of liver cancer development[J]. Hepatology, 2019, 69(6): 2608-2622. DOI: 10.1002/hep.30529.
doi: 10.1002/hep.30529 pmid: 30693543 |
[11] |
朱柯亭, 武振汝, 卢徐锋, 等. 肝细胞肝癌中HDAC3的表达及临床意义[J]. 世界华人消化杂志, 2017, 25(10): 922-928. DOI: 10.11569/wcjd.v25.i10.922.
doi: 10.11569/wcjd.v25.i10.922 |
[12] |
Ji H, Zhou Y, Zhuang X, et al. HDAC3 deficiency promotes liver cancer through a defect in H3K9ac/H3K9me3 transition[J]. Cancer Res, 2019, 79(14): 3676-3688. DOI: 10.1158/0008-5472.CAN-18-3767.
doi: 10.1158/0008-5472.CAN-18-3767 pmid: 31097476 |
[13] |
Boege Y, Malehmir M, Healy ME, et al. A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development[J]. Cancer Cell, 2017, 32(3): 342-359.e10. DOI: 10.1016/j.ccell.2017.08.010.
doi: S1535-6108(17)30354-9 pmid: 28898696 |
[14] |
Mo J, Liang H, Su C, et al. DDX3X: structure, physiologic functions and cancer[J]. Mol Cancer, 2021, 20(1): 38. DOI: 10.1186/s12943-021-01325-7.
doi: 10.1186/s12943-021-01325-7 pmid: 33627125 |
[15] |
Chan CH, Chen CM, Lee YW, et al. DNA damage, liver injury, and tumorigenesis: consequences of DDX3X loss[J]. Mol Cancer Res, 2019, 17(2): 555-566. DOI: 10.1158/1541-7786.MCR-18-0551.
doi: 10.1158/1541-7786.MCR-18-0551 |
[16] |
Shen J, Chen M, Lee D, et al. Histone chaperone FACT complex mediates oxidative stress response to promote liver cancer progression[J]. Gut, 2020, 69(2): 329-342. DOI: 10.1136/gutjnl-2019-318668.
doi: 10.1136/gutjnl-2019-318668 pmid: 31439637 |
[17] |
Goldstein M, Kastan MB. The DNA damage response: implications for tumor responses to radiation and chemotherapy[J]. Annu Rev Med, 2015, 66: 129-143. DOI: 10.1146/annurev-med-081313-121208.
doi: 10.1146/annurev-med-081313-121208 pmid: 25423595 |
[18] |
Chen CC, Chen CY, Cheng SF, et al. Hydroxygenkwanin increases the sensitivity of liver cancer cells to chemotherapy by inhibiting DNA damage response in mouse xenograft models[J]. Int J Mol Sci, 2021, 22(18): 9766. DOI: 10.3390/ijms22189766.
doi: 10.3390/ijms22189766 |
[19] |
Herath NI, Devun F, Herbette A, et al. Potentiation of doxorubicin efficacy in hepatocellular carcinoma by the DNA repair inhibitor DT01 in preclinical models[J]. Eur Radiol, 2017, 27(10): 4435-4444. DOI: 10.1007/s00330-017-4792-1.
doi: 10.1007/s00330-017-4792-1 pmid: 28374075 |
[20] |
Chen CC, Chen CY, Ueng SH, et al. Corylin increases the sensitivity of hepatocellular carcinoma cells to chemotherapy through long noncoding RNA RAD51-AS1-mediated inhibition of DNA repair[J]. Cell Death Dis, 2018, 9(5): 543. DOI: 10.1038/s41419-018-0575-0.
doi: 10.1038/s41419-018-0575-0 |
[21] |
Wang C, Tang H, Geng A, et al. Rational combination therapy for hepatocellular carcinoma with PARP1 and DNA-PK inhibitors[J]. Proc Natl Acad Sci U S A, 2020, 117(42): 26356-26365. DOI: 10.1073/pnas.2002917117.
doi: 10.1073/pnas.2002917117 pmid: 33020270 |
[22] |
Cherng YG, Chu YC, Yadav VK, et al. Induced mitochondrial alteration and DNA damage via IFNGR-JAK2-STAT1-PARP1 pathway facilitates viral hepatitis associated hepatocellular carcinoma aggressiveness and stemness[J]. Cancers (Basel), 2021, 13(11): 2755. DOI: 10.3390/cancers13112755.
doi: 10.3390/cancers13112755 |
[23] |
周蔚文, 孙晓南. 肝外胆管癌放疗的研究进展[J]. 国际肿瘤学杂志, 2020, 47(7): 431-435. DOI: 10.3760/cma.j.cn371439-20200224-00051.
doi: 10.3760/cma.j.cn371439-20200224-00051 |
[24] |
Sheng H, Huang Y, Xiao Y, et al. ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma[J]. J Immunother Cancer, 2020, 8(1): e000340. DOI: 10.1136/jitc-2019-000340.
doi: 10.1136/jitc-2019-000340 |
[25] |
Xie Y, Liu C, Zhang Y, et al. PKI-587 enhances radiosensitization of hepatocellular carcinoma by inhibiting the PI3K/AKT/mTOR pathways and DNA damage repair[J]. PLoS One, 2021, 16(10): e0258817. DOI: 10.1371/journal.pone.0258817.
doi: 10.1371/journal.pone.0258817 |
[26] |
Gerossier L, Dubois A, Paturel A, et al. PARP inhibitors and radiation potentiate liver cell death in vitro. Do hepatocellular carcinomas have an achilles' heel?[J]. Clin Res Hepatol Gastroenterol, 2021, 45(5): 101553. DOI: 10.1016/j.clinre.2020.09.014.
doi: 10.1016/j.clinre.2020.09.014 |
[27] |
Chen Y, Wang X, Deng X, et al. DNA damage repair status predicts opposite clinical prognosis immunotherapy and non-immunotherapy in hepatocellular carcinoma[J]. Front Immunol, 2021, 12: 676922. DOI: 10.3389/fimmu.2021.676922.
doi: 10.3389/fimmu.2021.676922 |
[28] |
李华兰. XPC、ERCC1及XPF表达与肝细胞癌临床病理特征及预后的相关性研究[D]. 南宁: 广西医科大学, 2019. DOI: 10.27038/d.cnki.ggxyu.2019.000139.
doi: 10.27038/d.cnki.ggxyu.2019.000139 |
[29] |
Liao X, Li Y, Li H, et al. Expression and clinical significance of ERCC1 and XPF in human hepatocellular carcinoma[J]. Onco Targets Ther, 2020, 13: 1059-1072. DOI: 10.2147/OTT.S237916.
doi: 10.2147/OTT.S237916 |
[30] |
Chen X, Legrand AJ, Cunniffe S, et al. Interplay between base excision repair protein XRCC1 and ALDH2 predicts overall survival in lung and liver cancer patients[J]. Cell Oncol (Dordr), 2018, 41(5): 527-539. DOI: 10.1007/s13402-018-0390-8.
doi: 10.1007/s13402-018-0390-8 |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[4] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[5] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[6] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞. 原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. |
[7] | 万芳, 杨钢, 李睿, 万启晶. 食管癌患者血清miR-497、miR-383水平及临床意义[J]. 国际肿瘤学杂志, 2024, 51(4): 204-209. |
[8] | 姚益新, 沈煜霖. 血清SOCS3、TXNIP水平对肝细胞癌TACE治疗预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 217-222. |
[9] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[10] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[11] | 彭琴, 蔡玉婷, 王伟. KPNA2在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 181-185. |
[12] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹. 结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[13] | 陈波光, 王苏贵, 张永杰. 血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
[14] | 金旭东, 陈忠坚, 毛伟敏. MTAP基因在恶性间皮瘤中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 99-104. |
[15] | 黄镇, 陈永顺. 循环肿瘤DNA在肝细胞癌诊疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 59-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||