国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (4): 216-219.doi: 10.3760/cma.j.cn371439-20210520-00038
收稿日期:
2021-05-20
修回日期:
2021-11-22
出版日期:
2022-04-08
发布日期:
2022-05-11
通讯作者:
冯勤梅
E-mail:qmf369@hotmail.com
Ma Meijie, Ma Huihan, Mi Jiaqing, Qin Qian, Feng Qinmei()
Received:
2021-05-20
Revised:
2021-11-22
Online:
2022-04-08
Published:
2022-05-11
Contact:
Feng Qinmei
E-mail:qmf369@hotmail.com
摘要:
焦孔素E蛋白与肿瘤关系密切。焦孔素E通过基因甲基化、基因突变或其他方式参与肿瘤的发生发展。焦孔素E介导的焦亡参与多种肿瘤的药物治疗过程,为肿瘤的药物治疗提供了全新的理论基础。深入研究焦孔素E将为肿瘤的认识、诊治提供一种全新的视角。
马梅杰, 马慧涵, 秘嘉庆, 秦倩, 冯勤梅. 焦孔素E与肿瘤[J]. 国际肿瘤学杂志, 2022, 49(4): 216-219.
Ma Meijie, Ma Huihan, Mi Jiaqing, Qin Qian, Feng Qinmei. Gasdermin E and neoplasms[J]. Journal of International Oncology, 2022, 49(4): 216-219.
[1] |
Booth KT, Azaiez H, Smith RJH. DFNA5 (GSDME) c.991-15_991-13delTTC: founder mutation or mutational hotspot?[J]. Int J Mol Sci, 2020, 21(11): 3951. DOI: 10.3390/ijms21113951.
doi: 10.3390/ijms21113951 |
[2] |
Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. DOI: 10.1038/nature22393.
doi: 10.1038/nature22393 |
[3] |
Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection[J]. Nat Rev Immunol, 2017, 17(3): 151-164. DOI: 10.1038/nri.2016.147.
doi: 10.1038/nri.2016.147 pmid: 28138137 |
[4] |
Chen S, Mei S, Luo Y, et al. Gasdermin family: a promising therapeutic target for stroke[J]. Transl Stroke Res, 2018, 9(6): 555-563. DOI: 10.1007/s12975-018-0666-3.
doi: 10.1007/s12975-018-0666-3 |
[5] |
Qiu S, Liu J, Xing F. ‘Hints’ in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death[J]. Cell Death Differ, 2017, 24(4): 588-596. DOI: 10.1038/cdd.2017.24.
doi: 10.1038/cdd.2017.24 |
[6] |
Chiang CY, Ching YH, Chang TY, et al. Novel eye genes systematically discovered through an integrated analysis of mouse transcriptomes and phenome[J]. Comput Struct Biotechnol J, 2019, 18: 73-82. DOI: 10.1016/j.csbj.2019.12.009.
doi: 10.1016/j.csbj.2019.12.009 |
[7] |
Stoll G, Ma Y, Yang H, et al. Pro-necrotic molecules impact local immunosurveillance in human breast cancer[J]. Oncoimmunology, 2017, 6(4): e1299302. DOI: 10.1080/2162402X.2017.1299302.
doi: 10.1080/2162402X.2017.1299302 |
[8] |
Guo M, An F, Yu H, et al. Comparative effects of schisandrin A, B, and C on Propionibacterium acnes-induced, NLRP3 inflammasome activation-mediated IL-1β secretion and pyroptosis[J]. Biomed Pharmacother, 2017, 96: 129-136. DOI: 10.1016/j.biopha.2017.09.097.
doi: 10.1016/j.biopha.2017.09.097 |
[9] |
Wang Y, Yin B, Li D, et al. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer[J]. Biochem Biophys Res Commun, 2018, 495(1): 1418-1425. DOI: 10.1016/j.bbrc.2017.11.156.
doi: 10.1016/j.bbrc.2017.11.156 |
[10] |
Li Q, Chen L, Dong Z, et al. Piperlongumine analogue L50377 induces pyroptosis via ROS mediated NF-κB suppression in non-small-cell lung cancer[J]. Chem Biol Interact, 2019, 313: 108820. DOI: 10.1016/j.cbi.2019.108820.
doi: 10.1016/j.cbi.2019.108820 |
[11] |
Hu J, Dong Y, Ding L, et al. Local delivery of arsenic trioxide nanoparticles for hepatocellular carcinoma treatment[J]. Signal Transduct Target Ther, 2019, 4: 28. DOI: 10.1038/s41392-019-0062-9.
doi: 10.1038/s41392-019-0062-9 |
[12] |
Ding Q, Zhang W, Cheng C, et al. Dioscin inhibits the growth of human osteosarcoma by inducing G2/M-phase arrest, apoptosis, and GSDME-dependent cell death in vitro and in vivo[J]. J Cell Physiol, 2020, 235(3): 2911-2924. DOI: 10.1002/jcp.29197.
doi: 10.1002/jcp.29197 |
[13] |
Kong Y, Feng Z, Chen A, et al. The natural flavonoid galangin elicits apoptosis, pyroptosis, and autophagy in glioblastoma[J]. Front Oncol, 2019, 9: 942. DOI: 10.3389/fonc.2019.00942.
doi: 10.3389/fonc.2019.00942 |
[14] |
Kim MS, Lebron C, Nagpal JK, et al. Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer[J]. Biochem Biophys Res Commun, 2008, 370(1): 38-43. DOI: 10.1016/j.bbrc.2008.03.026.
doi: 10.1016/j.bbrc.2008.03.026 |
[15] |
Croes L, de Beeck KO, Pauwels P, et al. DFNA5 promoter me-thylation a marker for breast tumorigenesis[J]. Oncotarget, 2017, 8(19): 31948-31958. DOI: 10.18632/oncotarget.16654.
doi: 10.18632/oncotarget.16654 |
[16] |
Croes L, Beyens M, Fransen E, et al. Large-scale analysis of DFNA5 methylation reveals its potential as biomarker for breast cancer[J]. Clin Epigenetics, 2018, 10: 51. DOI: 10.1186/s13148-018-0479-y.
doi: 10.1186/s13148-018-0479-y |
[17] |
Kim MS, Chang X, Yamashita K, et al. Aberrant promoter methy-lation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma[J]. Oncogene, 2008, 27(25): 3624-3634. DOI: 10.1038/sj.onc.1211021.
doi: 10.1038/sj.onc.1211021 pmid: 18223688 |
[18] |
Yokomizo K, Harada Y, Kijima K, et al. Methylation of the DFNA5 gene is frequently detected in colorectal cancer[J]. Anticancer Res, 2012, 32(4): 1319-1322.
pmid: 22493364 |
[19] |
Ibrahim J, Op de Beeck K, Fransen E, et al. Methylation analysis of Gasdermin E shows great promise as a biomarker for colorectal cancer[J]. Cancer Med, 2019, 8(5): 2133-2145. DOI: 10.1002/cam4.2103.
doi: 10.1002/cam4.2103 |
[20] |
Croes L, Fransen E, Hylebos M, et al. Determination of the potential tumor-suppressive effects of GSDME in a chemically induced and in a genetically modified intestinal cancer mouse model[J]. Cancers (Basel), 2019, 11(8): 1214. DOI: 10.3390/cancers11081214.
doi: 10.3390/cancers11081214 |
[21] |
Akino K, Toyota M, Suzuki H, et al. Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer[J]. Cancer Sci, 2007, 98(1): 88-95. DOI: 10.1111/j.1349-7006.2006.00351.x.
doi: 10.1111/j.1349-7006.2006.00351.x. |
[22] |
Zhang Z, Zhang Y, Xia S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity[J]. Nature, 2020, 579(7799): 415-420. DOI: 10.1038/s41586-020-2071-9.
doi: 10.1038/s41586-020-2071-9 |
[23] |
Peng Z, Wang P, Song W, et al. GSDME enhances Cisplatin sensitivity to regress non-small cell lung carcinoma by mediating pyroptosis to trigger antitumor immunocyte infiltration[J]. Signal Transduct Target Ther, 2020, 5(1): 159. DOI: 10.1038/s41392-020-00274-9.
doi: 10.1038/s41392-020-00274-9 |
[24] |
Zhang CC, Li CG, Wang YF, et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation[J]. Apoptosis, 2019, 24(3/4): 312-325. DOI: 10.1007/s10495-019-01515-1.
doi: 10.1007/s10495-019-01515-1 |
[25] |
Lu H, Zhang S, Wu J, et al. Molecular targeted therapies elicit concurrent apoptotic and GSDME-dependent pyroptotic tumor cell death[J]. Clin Cancer Res, 2018, 24(23): 6066-6077. DOI: 10.1158/1078-0432.CCR-18-1478.
doi: 10.1158/1078-0432.CCR-18-1478 |
[26] |
Chen L, Li Q, Zheng Z, et al. Design and optimize N-substituted EF24 as effective and low toxicity NF-κB inhibitor for lung cancer therapy via apoptosis-to-pyroptosis switch[J]. Chem Biol Drug Des, 2019, 94(1): 1368-1377. DOI: 10.1111/cbdd.13514.
doi: 10.1111/cbdd.13514 |
[27] |
Chen L, Weng B, Li H, et al. A thiopyran derivative with low murine toxicity with therapeutic potential on lung cancer acting through a NF-κB mediated apoptosis-to-pyroptosis switch[J]. Apoptosis, 2019, 24(1/2): 74-82. DOI: 10.1007/s10495-018-1499-y.
doi: 10.1007/s10495-018-1499-y |
[28] |
Zhu M, Wang J, Xie J, et al. Design, synthesis, and evaluation of chalcone analogues incorporate α,β-unsaturated ketone functiona-lity as anti-lung cancer agents via evoking ROS to induce pyroptosis[J]. Eur J Med Chem, 2018, 157: 1395-1405. DOI: 10.1016/j.ejmech.2018.08.072.
doi: 10.1016/j.ejmech.2018.08.072 |
[29] |
Wu M, Wang Y, Yang D, et al. A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma[J]. EBioMedicine, 2019, 41: 244-255. DOI: 10.1016/j.ebiom.2019.02.012.
doi: 10.1016/j.ebiom.2019.02.012 |
[30] |
Zhou B, Zhang JY, Liu XS, et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis[J]. Cell Res, 2018, 28(12): 1171-1185. DOI: 10.1038/s41422-018-0090-y.
doi: 10.1038/s41422-018-0090-y pmid: 30287942 |
[31] |
Yu J, Li S, Qi J, et al. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells[J]. Cell Death Dis, 2019, 10(3): 193. DOI: 10.1038/s41419-019-1441-4.
doi: 10.1038/s41419-019-1441-4 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||