[1] |
Martini G, Troiani T, Cardone C, et al. Present and future of metastatic colorectal cancer treatment: a review of new candidate targets[J]. World J Gastroenterol, 2017, 23(26):4675-4688. DOI: 10.3748/wjg.v23.i26.4675.
doi: 10.3748/wjg.v23.i26.4675
|
[2] |
Li ZN, Zhao L, Yu LF, et al. BRAF and KRAS mutations in metastatic colorectal cancer: future perspectives for personalized therapy[J]. Gastroenterol Rep (Oxf), 2020, 8(3):192-205. DOI: 10.1093/gastro/goaa022.
|
[3] |
Li QH, Wang YZ, Tu J, et al. Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance[J]. Gastroenterol Rep (Oxf), 2020, 8(3):179-191. DOI: 10.1093/gastro/goaa026.
|
[4] |
苏昊, 刘文杰, 包满都拉, 等. 转移性结直肠癌西妥昔单抗耐药的分子机制[J]. 国际肿瘤学杂志, 2020, 47(5):308-311. DOI: 10.3760/cma.j.cn371439-20200208-00025.
|
[5] |
Sforza V, Martinelli E, Ciardiello F, et al. Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colo-rectal cancer[J]. World J Gastroenterol, 2016, 22(28):6345-6361. DOI: 10.3748/wjg.v22.i28.6345.
doi: 10.3748/wjg.v22.i28.6345
|
[6] |
Siena S, Sartore-Bianchi A, Marsoni S, et al. Targeting the human epidermal growth factor receptor 2 (HER2) oncogene in colorectal cancer[J]. Ann Oncol, 2018, 29(5):1108-1119. DOI: 10.1093/annonc/mdy100.
doi: 10.1093/annonc/mdy100
|
[7] |
Gutierrez C, Schiff R. HER2: biology, detection, and clinical implications[J]. Arch Pathol Lab Med, 2011, 135(1):55-62. DOI: 10.1043/2010-0454-rar.1.
doi: 10.5858/2010-0454-RAR.1
|
[8] |
Liu F, Ren C, Jin Y, et al. Assessment of two different HER2 scoring systems and clinical relevance for colorectal cancer[J]. Virchows Arch, 2020, 476(3):391-398. DOI: 10.1007/s00428-019-02668-9.
doi: 10.1007/s00428-019-02668-9
|
[9] |
Shimada Y, Yagi R, Kameyama H, et al. Utility of comprehensive genomic sequencing for detecting HER2-positive colorectal cancer[J]. Hum Pathol, 2017, 66:1-9. DOI: 10.1016/j.humpath.2017.02.004.
doi: 10.1016/j.humpath.2017.02.004
|
[10] |
Fujii S, Magliocco AM, Kim J, et al. International harmonization of provisional diagnostic criteria for ERBB2-amplified metastatic colo-rectal cancer allowing for screening by next-generation sequencing panel[J]. JCO Precis Oncol, 2020, 4:6-19. DOI: 10.1200/PO.19.00154.
|
[11] |
Siravegna G, Sartore-Bianchi A, Nagy RJ, et al. Plasma HER2 (ERBB2) copy number predicts response to HER2-targeted therapy in metastatic colorectal cancer[J]. Clin Cancer Res, 2019, 25(10):3046-3053. DOI: 10.1158/1078-0432.CCR-18-3389.
doi: 10.1158/1078-0432.CCR-18-3389
pmid: 30808777
|
[12] |
Valtorta E, Martino C, Sartore-Bianchi A, et al. Assessment of a HER2 scoring system for colorectal cancer: results from a validation study[J]. Mod Pathol, 2015, 28(11):1481-1491. DOI: 10.1038/modpathol.2015.98.
doi: 10.1038/modpathol.2015.98
|
[13] |
Belli V, Matrone N, Napolitano S, et al. Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models[J]. J Exp Clin Cancer Res, 2019, 38(1):236. DOI: 10.1186/s13046-019-1230-z.
doi: 10.1186/s13046-019-1230-z
|
[14] |
Bertotti A, Migliardi G, Galimi F, et al. A molecularly annotated platform of patient-derived xenografts ("xenopatients") identifies HER2 as an effective therapeutic target in cetuximab-resistant colo-rectal cancer[J]. Cancer Discov, 2011, 1(6):508-523. DOI: 10.1158/2159-8290.CD-11-0109.
doi: 10.1158/2159-8290.CD-11-0109
pmid: 22586653
|
[15] |
Jeong JH, Kim J, Hong YS, et al. HER2 amplification and cetu-ximab efficacy in patients with metastatic colorectal cancer harboring wild-type RAS and BRAF[J]. Clin Colorectal Cancer, 2017, 16(3): e147-e152. DOI: 10.1016/j.clcc.2017.01.005.
|
[16] |
Sartore-Bianchi A, Amatu A, Porcu L, et al. HER2 positivity predicts unresponsiveness to EGFR-targeted treatment in metastatic colorectal cancer[J]. Oncologist, 2019, 24(10):1395-1402. DOI: 10.1634/theoncologist.2018-0785.
doi: 10.1634/theoncologist.2018-0785
pmid: 30952821
|
[17] |
Raghav K, Loree JM, Morris JS, et al. Validation of HER2 amplification as a predictive biomarker for anti-epidermal growth factor receptor antibody therapy in metastatic colorectal cancer[J]. JCO Precis Oncol, 2019, 3(3):1-13. DOI: 10.1200/PO.18.00226.
|
[18] |
Mezni E, Vicier C, Guerin M, et al. New therapeutics in HER2-positive advanced breast cancer: towards a change in clinical practices? pi[J]. Cancers (Basel), 2020, 12(6): 1573. DOI: 10.3390/cancers12061573.
|
[19] |
Siena S, Sartore-Bianchi A, Trusolino L, et al. Abstract CT005: final results of the HERACLES trial in HER2-amplified colorectal cancer[J]. Cancer Res, 2017, 77 (Supple 13):CT005. DOI: 10.1158/1538-7445.AM2017-CT005.
|
[20] |
Meric-Bernstam F, Hurwitz H, Raghav KPS, et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study[J]. Lancet Oncol, 2019, 20(4):518-530. DOI: 10.1016/S1470-2045(18)30904-5.
doi: 10.1016/S1470-2045(18)30904-5
|
[21] |
Nakamura Y, Okamoto W, Kato T, et al. 526PD-TRIUMPH: primary efficacy of a phase Ⅱ trial of trastuzumab (T) and pertuzumab (P) in patients (pts) with metastatic colorectal cancer (mCRC) with HER2 (ERBB2) amplification (amp) in tumour tissue or circulating tumour DNA (ctDNA): a GOZILA sub-study[J]. Ann Oncol, 2019, 30(Suppl 5):v199-v200. DOI: 10.1093/annonc/mdz246.004.
|
[22] |
Strickler JH, Zemla T, Ou FS, et al. 527PD-Trastuzumab and tucatinib for the treatment of HER2 amplified metastatic colorectal cancer (mCRC): initial results from the MOUNTAINEER trial[J]. Ann Oncol, 2019, 30 (Supple 5):v200. DOI: 10.1093/annonc/mdz246.005.
|
[23] |
Martinelli E, Troiani T, Sforza V, et al. Sequential HER2 blockade as effective therapy in chemorefractory, HER2 gene-a-mplified, RAS wild-type, metastatic colorectal cancer: learning from a clinical case[J]. ESMO Open, 2018, 3(1):e000299. DOI: 10.1136/esmoopen-2017-000299.
doi: 10.1136/esmoopen-2017-000299
|
[24] |
陈功. 2019年结直肠癌治疗进展盘点[J]. 肿瘤综合治疗电子杂志, 2020, 1(6):89-90. DOI: 10.12151/JMCM.2020.01-10.
|