
国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (2): 96-100.doi: 10.3760/cma.j.cn371439-20200615-00018
收稿日期:2020-06-15
									
				
											修回日期:2020-07-12
									
				
									
				
											出版日期:2021-02-08
									
				
											发布日期:2021-03-11
									
			通讯作者:
					杨向红
											E-mail:xianghongyoung@163.com
												基金资助:Received:2020-06-15
									
				
											Revised:2020-07-12
									
				
									
				
											Online:2021-02-08
									
				
											Published:2021-03-11
									
			Contact:
					Yang Xianghong   
											E-mail:xianghongyoung@163.com
												摘要:
N6-甲基腺嘌呤(m6A)是真核生物信使RNA和长非编码RNA最主要的修饰,该修饰过程由m6A甲基转移酶及去甲基化酶动态调控,主要通过m6A识别蛋白发挥作用。m6A修饰可影响转录、剪接、定位、核转运、翻译及降解等RNA代谢的各个方面,其失调可导致RNA功能紊乱,基因表达异常。m6A修饰调节因子在多种肿瘤中表达失衡,与肿瘤的形成、增殖、分化、侵袭和转移相关。
曾娟, 杨向红. N6-甲基腺嘌呤修饰调节因子与肿瘤[J]. 国际肿瘤学杂志, 2021, 48(2): 96-100.
Zeng Juan, Yang Xianghong. N6-methyladenine methylation regulators and cancer[J]. Journal of International Oncology, 2021, 48(2): 96-100.
| [1] |  
											  Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways[J]. Nucleic Acids Res, 2018,46(D1):D303-D307. DOI: 10.1093/nar/gkx1030. 
											 												 pmid: 29106616  | 
										
| [2] |  
											  Lin S, Choe J, Du P, et al. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells[J]. Mol Cell, 2016,62(3):335-345. DOI: 10.1016/j.molcel.2016.03.021. 
											 												 doi: 10.1016/j.molcel.2016.03.021 pmid: 27117702  | 
										
| [3] |  
											  Liu J, Eckert MA, Harada BT, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer[J]. Nat Cell Biol, 2018,20(9):1074-1083. DOI: 10.1038/s41556-018-0174-4. 
											 												 pmid: 30154548  | 
										
| [4] |  
											  Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing[J]. Hepatology, 2017,65(2):529-543. DOI: 10.1002/hep.28885. 
											 												 doi: 10.1002/hep.28885 pmid: 27774652  | 
										
| [5] |  
											  Wang Q, Chen C, Ding Q, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020,69(7):1193-1205. DOI: 10.1136/gutjnl-2019-319639. 
											 												 doi: 10.1136/gutjnl-2019-319639 pmid: 31582403  | 
										
| [6] |  
											  Li Y, Xiao J, Bai J, et al. Molecular characterization and clinical relevance of m6A regulators across 33 cancer types[J]. Mol Cancer, 2019,18(1):137. DOI: 10.1186/s12943-019-1066-3. 
											 												 pmid: 31521193  | 
										
| [7] |  
											  Zheng W, Dong X, Zhao Y, et al. Multiple functions and mechanisms underlying the role of METTL3 in human cancers[J]. Front Oncol, 2019,9:1403. DOI: 10.3389/fonc.2019.01403. 
											 												 doi: 10.3389/fonc.2019.01403 pmid: 31921660  | 
										
| [8] |  
											  Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018,67(6):2254-2270. DOI: 10.1002/hep.29683. 
											 												 doi: 10.1002/hep.29683 pmid: 29171881  | 
										
| [9] |  
											  Zhang J, Bai R, Li M, et al. Excessive miR-25-3p maturation via N(6)-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression[J]. Nat Commun, 2019,10(1):1858. DOI: 10.1038/s41467-019-09712-x. 
											 												 pmid: 31015415  | 
										
| [10] |  
											  Zhu W, Si Y, Xu J, et al. Methyltransferase like 3 promotes colo-rectal cancer proliferation by stabilizing CCNE1 mRNA in an m6A-dependent manner[J]. J Cell Mol Med, 2020,24(6):3521-3533. DOI: 10.1111/jcmm.15042. 
											 												 doi: 10.1111/jcmm.15042 pmid: 32039568  | 
										
| [11] |  
											  Peng W, Li J, Chen R, et al. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway[J]. J Exp Clin Cancer Res, 2019,38(1):393. DOI: 10.1186/s13046-019-1408-4. 
											 												 doi: 10.1186/s13046-019-1408-4 pmid: 31492150  | 
										
| [12] |  
											  Deng R, Cheng Y, Ye S, et al. m6A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways[J]. Onco Targets Ther, 2019,12:4391-4402. DOI: 10.2147/ott.S201052. 
											 												 doi: 10.2147/OTT.S201052 pmid: 31239708  | 
										
| [13] |  
											  Li X, Tang J, Huang W, et al. The m6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma[J]. Oncotarget, 2017,8(56):96103-96116. DOI: 10.18632/oncotarget.21726. 
											 												 doi: 10.18632/oncotarget.21726 pmid: 29221190  | 
										
| [14] |  
											  Cui Q, Shi H, Ye P, et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells[J]. Cell Rep, 2017,18(11):2622-2634. DOI: 10.1016/j.celrep.2017.02.059. 
											 												 doi: 10.1016/j.celrep.2017.02.059 pmid: 28297667  | 
										
| [15] |  
											  Weng H, Huang H, Wu H, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification[J]. Cell Stem Cell, 2018,22(2):191-205, e9. DOI: 10.1016/j.stem.2017.11.016. 
											 												 pmid: 29290617  | 
										
| [16] |  
											  Sun C, Chang L, Liu C, et al. The study of METTL3 and METTL14 expressions in childhood ETV6/RUNX1-positive acute lymphoblastic leukemia[J]. Mol Genet Genomic Med, 2019,7(10):e00933. DOI: 10.1002/mgg3.933. 
											 												 pmid: 31429529  | 
										
| [17] |  
											  Wu L, Wu D, Ning J, et al. Changes of N6-methyladenosine modulators promote breast cancer progression[J]. BMC Cancer, 2019,19(1):326. DOI: 10.1186/s12885-019-5538-z. 
											 												 pmid: 30953473  | 
										
| [18] |  
											  Chen Y, Peng C, Chen J, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1[J]. Mol Cancer, 2019,18(1):127. DOI: 10.1186/s12943-019-1053-8. 
											 												 doi: 10.1186/s12943-019-1053-8 pmid: 31438961  | 
										
| [19] |  
											  Li H, Su Q, Li B, et al. High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltration[J]. J Cell Mol Med, 2020,24(8):4452-4465. DOI: 10.1111/jcmm.15104. 
											 												 doi: 10.1111/jcmm.15104 pmid: 32176425  | 
										
| [20] |  
											  Lan T, Li H, Zhang D, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3[J]. Mol Cancer, 2019,18(1):186. DOI: 10.1186/s12943-019-1106-z. 
											 												 doi: 10.1186/s12943-019-1106-z pmid: 31856849  | 
										
| [21] |  
											  Cheng X, Li M, Rao X, et al. KIAA1429 regulates the migration and invasion of hepatocellular carcinoma by altering m6A modification of ID2 mRNA[J]. Onco Targets Ther, 2019,12:3421-3428. DOI: 10.2147/ott.S180954. 
											 												 pmid: 31118692  | 
										
| [22] |  
											  Barros-Silva D, Lobo J, Guimarães-Teixeira C, et al. VIRMA-dependent N6-methyladenosine modifications regulate the expression of long non-coding RNAs CCAT1 and CCAT2 in prostate cancer[J]. Cancers (Basel), 2020,12(4):771. DOI: 10.3390/can-cers12040771. 
											 												 doi: 10.3390/cancers12040771  | 
										
| [23] |  
											  Li Z, Weng H, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase[J]. Cancer Cell, 2017,31(1):127-141. DOI: 10.1016/j.ccell.2016.11.017. 
											 												 doi: 10.1016/j.ccell.2016.11.017 pmid: 28017614  | 
										
| [24] |  
											  Niu Y, Lin Z, Wan A, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3[J]. Mol Cancer, 2019,18(1):46. DOI: 10.1186/s12943-019-1004-4. 
											 												 doi: 10.1186/s12943-019-1004-4 pmid: 30922314  | 
										
| [25] |  
											  Rong ZX, Li Z, He JJ, et al. Downregulation of fat mass and obesity associated (FTO) promotes the progression of intrahepatic cholangiocarcinoma[J]. Front Oncol, 2019,9:369. DOI: 10.3389/fonc.2019.00369. 
											 												 doi: 10.3389/fonc.2019.00369 pmid: 31143705  | 
										
| [26] |  
											  Zhuang C, Zhuang C, Luo X, et al. N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis[J]. J Cell Mol Med, 2019,23(3):2163-2173. DOI: 10.1111/jcmm.14128. 
											 												 doi: 10.1111/jcmm.14128 pmid: 30648791  | 
										
| [27] |  
											  Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast can-cer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA[J]. Proc Natl Acad Sci U S A, 2016,113(14):E2047-E2056. DOI: 10.1073/pnas.1602883113. 
											 												 doi: 10.1073/pnas.1602883113 pmid: 27001847  | 
										
| [28] |  
											  Guo J, Wu Y, Du J, et al. Deregulation of UBE2C-mediated autophagy repression aggravates NSCLC progression[J]. Oncogenesis, 2018,7(6):49. DOI: 10.1038/s41389-018-0054-6. 
											 												 pmid: 29904125  | 
										
| [29] |  
											  Jin D, Guo J, Wu Y, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC[J]. Mol Cancer, 2020,19(1):40. DOI: 10.1186/s12943-020-01161-1. 
											 												 doi: 10.1186/s12943-020-01161-1 pmid: 32106857  | 
										
| [30] |  
											  He Y, Hu H, Wang Y, et al. ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation[J]. Cell Physiol Biochem, 2018,48(2):838-846. DOI: 10.1159/000491915. 
											 												 doi: 10.1159/000491915 pmid: 30032148  | 
										
| [31] |  
											  Guo X, Li K, Jiang W, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner[J]. Mol Cancer, 2020,19(1):91. DOI: 10.1186/s12943-020-01158-w. 
											 												 doi: 10.1186/s12943-020-01158-w pmid: 32429928  | 
										
| [32] |  
											  Tang B, Yang Y, Kang M, et al. m6A demethylase ALKBH5 inhi-bits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling[J]. Mol Cancer, 2020,19(1):3. DOI: 10.1186/s12943-019-1128-6. 
											 												 doi: 10.1186/s12943-019-1128-6 pmid: 31906946  | 
										
| [33] |  
											  Paris J, Morgan M, Campos J, et al. Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia[J]. Cell Stem Cell, 2019,25(1):137-148, e136. DOI: 10.1016/j.stem.2019.03.021. 
											 												 doi: 10.1016/j.stem.2019.03.021 pmid: 31031138  | 
										
| [34] |  
											  Xie H, Li J, Ying Y, et al. METTL3/YTHDF2 m6A axis promotes tumorigenesis by degrading SETD7 and KLF4 mRNAs in bladder cancer[J]. J Cell Mol Med, 2020,24(7):4092-4104. DOI: 10.1111/jcmm.15063. 
											 												 doi: 10.1111/jcmm.15063 pmid: 32126149  | 
										
| [35] |  
											  Yang S, Wei J, Cui YH, et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade[J]. Nat Commun, 2019,10(1):2782. DOI: 10.1038/s41467-019-10669-0. 
											 												 doi: 10.1038/s41467-019-10669-0 pmid: 31239444  | 
										
| [36] |  
											  Chen J, Sun Y, Xu X, et al. YTH domain family 2 orchestrates epithelial-mesenchymal transition/proliferation dichotomy in pancreatic cancer cells[J]. Cell Cycle, 2017,16(23):2259-2271. DOI: 10.1080/15384101.2017.1380125. 
											 												 pmid: 29135329  | 
										
| [37] |  
											  Zhong L, Liao D, Zhang M, et al. YTHDF2 suppresses cell prolife-ration and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma[J]. Cancer Lett, 2019,442:252-261. DOI: 10.1016/j.canlet.2018.11.006. 
											 												 doi: 10.1016/j.canlet.2018.11.006 pmid: 30423408  | 
										
| [38] |  
											  Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015,161(6):1388-1399. DOI: 10.1016/j.cell.2015.05.014. 
											 												 doi: 10.1016/j.cell.2015.05.014 pmid: 26046440  | 
										
| [39] |  
											  Bai Y, Yang C, Wu R, et al. YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma[J]. Front Oncol, 2019,9:332. DOI: 10.3389/fonc.2019.00332. 
											 												 doi: 10.3389/fonc.2019.00332 pmid: 31131257  | 
										
| [40] |  
											  Jin D, Guo J, Wu Y, et al. m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP acti-vity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis[J]. J Hematol Oncol, 2019,12(1):135. DOI: 10.1186/s13045-019-0830-6. 
											 												 doi: 10.1186/s13045-019-0830-6 pmid: 31818312  | 
										
| [41] |  
											  Jia R, Chai P, Wang S, et al. m6A modification suppresses ocular melanoma through modulating HINT2 mRNA translation[J]. Mol Cancer, 2019,18(1):161. DOI: 10.1186/s12943-019-1088-x. 
											 												 doi: 10.1186/s12943-019-1088-x pmid: 31722709  | 
										
| [42] |  
											  Klinge CM, Piell KM, Tooley CS, et al. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells[J]. Sci Rep, 2019,9(1):9430. DOI: 10.1038/s41598-019-45636-8. 
											 												 doi: 10.1038/s41598-019-45636-8 pmid: 31263129  | 
										
| [1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. | 
| [2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. | 
| [3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. | 
| [4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. | 
| [5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. | 
| [6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. | 
| [7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. | 
| [8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. | 
| [9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. | 
| [10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. | 
| [11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. | 
| [12] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. | 
| [13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. | 
| [14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. | 
| [15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||
