Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (2): 99-104.doi: 10.3760/cma.j.cn371439-20231109-00014
• Reviews • Previous Articles Next Articles
Jin Xudong1,2, Chen Zhongjian3, Mao Weimin2,4()
Received:
2023-11-09
Revised:
2024-01-03
Online:
2024-02-08
Published:
2024-04-03
Contact:
Mao Weimin,Email:Supported by:
Jin Xudong, Chen Zhongjian, Mao Weimin. Research progress on the role of MTAP in malignant mesothelioma[J]. Journal of International Oncology, 2024, 51(2): 99-104.
"
鉴别诊断 | 标志物 | 敏感性(%) | 特异性(%) | 参考文献 |
---|---|---|---|---|
MPM与RMH(组织学样本) | MTAP IHC | 45.1~47.4 | 100 | [ |
MTAP+BAP1 IHC | 73.7~76.5 | 100 | [ | |
MTAP+BAP1+EZH2 IHC | 86.8 | 100 | [ | |
MPM与RMH(细胞学样本) | MTAP IHC | 42.2~52.8 | 100 | [ |
MTAP+BAP1 IHC | 77.8~83.3 | 100 | [ | |
DMPM与RMH(组织学样本) | MTAP IHC | 33.3 | 100 | [ |
MTAP+BAP1 IHC | 83.3 | 100 | [ | |
MTAP+BAP1+5-hmC IHC | 90.0 | 100 | [ | |
DMPM与RMH(细胞学样本) | MTAP IHC | 40.6 | 100 | [ |
MTAP+BAP1 IHC | 78.1 | 100 | [ | |
MTAP+BAP1+5-hmC IHC | 84.4 | 100 | [ | |
肉瘤样MPM与纤维素性胸膜炎(组织学样本) | MTAP IHC | 80.0 | 100 | [ |
MTAP+BAP1 IHC | 90.0 | 100 | [ |
[1] | 中国医师协会肿瘤多学科诊疗专业委员会. 中国恶性胸膜间皮瘤临床诊疗指南(2021版)[J]. 中华肿瘤杂志, 2021, 43(4): 383-394. DOI: 10.3760/cma.j.cn112152-20210313-00225. |
[2] | Viscardi G, Di Liello R, Morgillo F. How Ⅰ treat malignant pleural mesothelioma[J]. ESMO Open, 2020, 4(Suppl 2): e000669. DOI: 10.1136/esmoopen-2019-000669. |
[3] |
Carbone M, Ly BH, Dodson RF, et al. Malignant mesothelioma: facts, myths, and hypotheses[J]. J Cell Physiol, 2012, 227(1): 44-58. DOI: 10.1002/jcp.22724.
pmid: 21412769 |
[4] |
Mossman BT, Shukla A, Heintz NH, et al. New insights into understanding the mechanisms, pathogenesis, and management of malignant mesotheliomas[J]. Am J Pathol, 2013, 182(4): 1065-1077. DOI: 10.1016/j.ajpath.2012.12.028.
pmid: 23395095 |
[5] |
Mutti L, Peikert T, Robinson BWS, et al. Scientific advances and new frontiers in mesothelioma therapeutics[J]. J Thorac Oncol, 2018, 13(9): 1269-1283. DOI: 10.1016/j.jtho.2018.06.011.
pmid: 29966799 |
[6] |
Tunesi S, Ferrante D, Mirabelli D, et al. Gene-asbestos interaction in malignant pleural mesothelioma susceptibility[J]. Carcinogenesis, 2015, 36(10): 1129-1135. DOI: 10.1093/carcin/bgv097.
pmid: 26139392 |
[7] | Matullo G, Guarrera S, Betti M, et al. Genetic variants associated with increased risk of malignant pleural mesothelioma: a genome-wide association study[J]. PLoS One, 2013, 8(4): e61253. DOI: 10.1371/journal.pone.0061253. |
[8] |
Xu J, Kadariya Y, Cheung M, et al. Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma[J]. Cancer Res, 2014, 74(16): 4388-4397. DOI: 10.1158/0008-5472.CAN-14-1328.
pmid: 24928783 |
[9] |
Franko A, Kotnik N, Goricar K, et al. The influence of genetic variability on the risk of developing malignant mesothelioma[J]. Radiol Oncol, 2018, 52(1): 105-111. DOI: 10.2478/raon-2018-0004.
pmid: 29520212 |
[10] | Bononi A, Goto K, Ak G, et al. Heterozygous germline BLM mutations increase susceptibility to asbestos and mesothelioma[J]. Proc Natl Acad Sci U S A, 2020, 117(52): 33466-33473. DOI: 10.1073/pnas.2019652117. |
[11] | Urso L, Cavallari I, Sharova E, et al. Metabolic rewiring and redox alterations in malignant pleural mesothelioma[J]. Br J Cancer, 2020, 122(1): 52-61. DOI: 10.1038/s41416-019-0661-9. |
[12] | 毛伟敏, 陆舜, 王俊, 等. 恶性胸膜间皮瘤(MPM)诊治共识(2022, 杭州)[J]. 中国肿瘤, 2022, 31(12): 941-951. DOI: 10.11735/j.issn.1004-0242.2022.12.A002. |
[13] | Chapel DB, Schulte JJ, Berg K, et al. MTAP immunohistochemistry is an accurate and reproducible surrogate for CDKN2A fluorescence in situ hybridization in diagnosis of malignant pleural mesothelioma[J]. Mod Pathol, 2020, 33(2): 245-254. DOI: 10.1038/s41379-019-0310-0. |
[14] | Cheng YY, Yuen ML, Rath EM, et al. CDKN2A and MTAP are useful biomarkers detectable by droplet digital PCR in malignant pleural mesothelioma: a potential alternative method in diagnosis compared to fluorescence in situ hybridisation[J]. Front Oncol, 2020, 10: 579327. DOI: 10.3389/fonc.2020.579327. |
[15] |
Barbarino M, Cesari D, Bottaro M, et al. PRMT5 silencing selectively affects MTAP-deleted mesothelioma: in vitro evidence of a novel promising approach[J]. J Cell Mol Med, 2020, 24(10): 5565-5577. DOI: 10.1111/jcmm.15213.
pmid: 32301278 |
[16] |
Han G, Yang G, Hao D, et al. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy[J]. Nat Commun, 2021, 12(1): 5606. DOI: 10.1038/s41467-021-25894-9.
pmid: 34556668 |
[17] | He HL, Lee YE, Shiue YL, et al. Characterization and prognostic significance of methylthioadenosine phosphorylase deficiency in nasopharyngeal carcinoma[J]. Medicine (Baltimore), 2015, 94(49): e2271. DOI: 10.1097/MD.0000000000002271. |
[18] | Amano Y, Matsubara D, Kihara A, et al. Expression and localisation of methylthioadenosine phosphorylase (MTAP) in oral squamous cell carcinoma and their significance in epithelial-to-mesenchymal transition[J]. Pathology, 2022, 54(3): 294-301. DOI: 10.1016/j.pathol.2021.05.101. |
[19] |
Bertino JR, Waud WR, Parker WB, et al. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity: current strategies[J]. Cancer Biol Ther, 2011, 11(7): 627-632. DOI: 10.4161/cbt.11.7.14948.
pmid: 21301207 |
[20] |
Kadariya Y, Yin B, Tang B, et al. Mice heterozygous for germ-line mutations in methylthioadenosine phosphorylase (MTAP) die prematurely of T-cell lymphoma[J]. Cancer Res, 2009, 69(14): 5961-5969. DOI: 10.1158/0008-5472.CAN-09-0145.
pmid: 19567676 |
[21] |
Schmid M, Malicki D, Nobori T, et al. Homozygous deletions of methylthioadenosine phosphorylase (MTAP) are more frequent than p16INK4A (CDKN2) homozygous deletions in primary non-small cell lung cancers (NSCLC)[J]. Oncogene, 1998, 17(20): 2669-2675. DOI: 10.1038/sj.onc.1202205.
pmid: 9840931 |
[22] |
Christopher SA, Diegelman P, Porter CW, et al. Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line[J]. Cancer Res, 2002, 62(22): 6639-6644.
pmid: 12438261 |
[23] |
Kalev P, Hyer ML, Gross S, et al. MAT2A inhibition blocks the growth of MTAP-deleted cancer cells by reducing PRMT5-dependent mRNA splicing and inducing DNA damage[J]. Cancer Cell, 2021, 39(2): 209-224.e11. DOI: 10.1016/j.ccell.2020.12.010.
pmid: 33450196 |
[24] |
Illei PB, Rusch VW, Zakowski MF, et al. Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas[J]. Clin Cancer Res, 2003, 9(6): 2108-2113.
pmid: 12796375 |
[25] |
Patro CPK, Biswas N, Pingle SC, et al. MTAP loss: a possible therapeutic approach for glioblastoma[J]. J Transl Med, 2022, 20(1): 620. DOI: 10.1186/s12967-022-03823-8.
pmid: 36572880 |
[26] | 赵祎, 王萌, 杨洋. 肿瘤中甲硫氨酸代谢及其相关基因的表达调控[J]. 中国生物化学与分子生物学报, 2022, 38(7): 849-857. DOI: 10.13865/j.cnki.cjbmb.2022.01.1447. |
[27] | 余英豪, 刘伟. 恶性间皮瘤的免疫组化诊断[J]. 诊断病理学杂志, 2014, 21(5): 257-259. DOI: 10.3969/j.issn.1007-8096.2014.05.001. |
[28] |
Berg KB, Dacic S, Miller C, et al. Utility of methylthioadenosine phosphorylase compared with BAP1 immunohistochemistry, and CDKN2A and NF2 fluorescence in situ hybridization in separating reactive mesothelial proliferations from epithelioid malignant mesotheliomas[J]. Arch Pathol Lab Med, 2018, 142(12): 1549-1553. DOI: 10.5858/arpa.2018-0273-OA.
pmid: 30059257 |
[29] |
Hida T, Hamasaki M, Matsumoto S, et al. Immunohistochemical detection of MTAP and BAP1 protein loss for mesothelioma diagnosis: comparison with 9p21 FISH and BAP1 immunohistochemistry[J]. Lung Cancer, 2017, 104: 98-105. DOI: 10.1016/j.lungcan.2016.12.017.
pmid: 28213009 |
[30] | Chapel DB, Schulte JJ, Husain AN, et al. Application of immunohistochemistry in diagnosis and management of malignant mesothelioma[J]. Transl Lung Cancer Res, 2020, 9(Suppl 1): S3-S27. DOI: 10.21037/tlcr.2019.11.29. |
[31] | Chapel DB, Husain AN, Krausz T. Immunohistochemical evaluation of nuclear 5-hydroxymethylcytosine (5-hmC) accurately distinguishes malignant pleural mesothelioma from benign mesothelial proliferations[J]. Mod Pathol, 2019, 32(3): 376-386. DOI: 10.1038/s41379-018-0159-7. |
[32] |
Shinozaki‐Ushiku A, Ushiku T, Morita S, et al. Diagnostic utility of BAP1 and EZH2 expression in malignant mesothelioma[J]. Histopathology, 2017, 70(5): 722-733. DOI: 10.1111/his.13123.
pmid: 27859460 |
[33] | Alsugair Z, Kepenekian V, Fenouil T, et al. 5-hmC loss is another useful tool in addition to BAP1 and MTAP immunostains to distinguish diffuse malignant peritoneal mesothelioma from reactive mesothelial hyperplasia in peritoneal cytology cell-blocks and biopsies[J]. Virchows Arch, 2022, 481(1): 23-29. DOI: 10.1007/s00428-022-03336-1. |
[34] |
Yoshimura M, Kinoshita Y, Hamasaki M, et al. Highly expressed EZH2 in combination with BAP1 and MTAP loss, as detected by immunohistochemistry, is useful for differentiating malignant pleural mesothelioma from reactive mesothelial hyperplasia[J]. Lung Cancer, 2019, 130: 187-193. DOI: 10.1016/j.lungcan.2019.02.004.
pmid: 30885343 |
[35] |
Kinoshita Y, Hida T, Hamasaki M, et al. A combination of MTAP and BAP1 immunohistochemistry in pleural effusion cytology for the diagnosis of mesothelioma[J]. Cancer Cytopathol, 2018, 126(1): 54-63. DOI: 10.1002/cncy.21928.
pmid: 29053210 |
[36] |
Kinoshita Y, Hamasaki M, Matsumoto S, et al. Fluorescence in situ hybridization detection of chromosome 22 monosomy in pleural effusion cytology for the diagnosis of mesothelioma[J]. Cancer Cytopathol, 2021, 129(7): 526-536. DOI: 10.1002/cncy.22409.
pmid: 33493384 |
[37] |
Wu D, Hiroshima K, Matsumoto S, et al. Diagnostic usefulness of p16/CDKN2A FISH in distinguishing between sarcomatoid mesothelioma and fibrous pleuritis[J]. Am J Clin Pathol, 2013, 139(1): 39-46. DOI: 10.1309/AJCPT94JVWIHBKRD.
pmid: 23270897 |
[38] |
Kinoshita Y, Hamasaki M, Yoshimura M, et al. A combination of MTAP and BAP1 immunohistochemistry is effective for distingui-shing sarcomatoid mesothelioma from fibrous pleuritis[J]. Lung Cancer, 2018, 125: 198-204. DOI: 10.1016/j.lungcan.2018.09.019.
pmid: 30429020 |
[39] | Sa-Ngiamwibool P, Hamasaki M, Kinoshita Y, et al. Challenges and limitation of MTAP immunohistochemistry in diagnosing desmoplastic mesothelioma/sarcomatoid pleural mesothelioma with desmoplastic features[J]. Ann Diagn Pathol, 2022, 60: 152004. DOI: 10.1016/j.anndiagpath.2022.152004. |
[40] |
Marjon K, Cameron MJ, Quang P, et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis[J]. Cell Rep, 2016, 15(3): 574-587. DOI: 10.1016/j.celrep.2016.03.043.
pmid: 27068473 |
[41] | Lubin M, Lubin A. Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy[J]. PLoS One, 2009, 4(5): e5735. DOI: 10.1371/journal.pone.0005735. |
[42] | Fan N, Zhang Y, Zou S. Methylthioadenosine phosphorylase deficiency in tumors: a compelling therapeutic target[J]. Front Cell Dev Biol, 2023, 11: 1173356. DOI: 10.3389/fcell.2023.1173356. |
[43] | Dulloo S, Bzura A, Fennell DA. Precision therapy for mesothelioma: feasibility and new opportunities[J]. Cancers (Basel), 2021, 13(10): 2347. DOI: 10.3390/cancers13102347. |
[44] |
Kryukov GV, Wilson FH, Ruth JR, et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells[J]. Science, 2016, 351(6278): 1214-1218. DOI: 10.1126/science.aad5214.
pmid: 26912360 |
[45] |
Mavrakis KJ, McDonald ER 3rd, Schlabach MR, et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5[J]. Science, 2016, 351(6278): 1208-1213. DOI: 10.1126/science.aad5944.
pmid: 26912361 |
[46] |
Stopa N, Krebs JE, Shechter D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond[J]. Cell Mol Life Sci, 2015, 72(11): 2041-2059. DOI: 10.1007/s00018-015-1847-9.
pmid: 25662273 |
[47] | 王鹏飞, 陈奕. 甲硫氨酸腺苷转移酶2A在肿瘤发生中的作用及其抑制剂研发现状[J]. 药学进展, 2022, 46(12): 884-897. DOI: 10.20053/j.issn1001-5094.2022.12.002. |
[48] | Krasinskas AM, Bartlett DL, Cieply K, et al. CDKN2A and MTAP deletions in peritoneal mesotheliomas are correlated with loss of p16 protein expression and poor survival[J]. Mod Pathol, 2010, 23(4): 531-538. DOI: 10.1038/modpathol.2009.186. |
[49] | Belderbos RA, Maat APWM, Baart SJ, et al. Ki67 (MIB-1) as a prognostic marker for clinical decision making before extended pleurectomy decortication in malignant pleural mesothelioma[J]. JTO Clin Res Rep, 2021, 2(4): 100155. DOI: 10.1016/j.jtocrr.2021.100155. |
[50] | Zhu M, Lu Z, Guo H, et al. Diagnostic value of combination of biomarkers for malignant pleural mesothelioma: a systematic review and meta-analysis[J]. Front Oncol, 2023, 13: 1136049. DOI: 10.3389/fonc.2023.1136049. |
[51] |
Zhang Y, Zhang TT, Gao L, et al. Downregulation of MTAP promotes tumor growth and metastasis by regulating ODC activity in breast cancer[J]. Int J Biol Sci, 2022, 18(7): 3034-3047. DOI: 10.7150/ijbs.67149.
pmid: 35541910 |
[52] | Chang WH, Chen YJ, Hsiao YJ, et al. Reduced symmetric dimethylation stabilizes vimentin and promotes metastasis in MTAP-deficient lung cancer[J]. EMBO Rep, 2022, 23(8): e54265. DOI: 10.15252/embr.202154265. |
[53] | Xu J, Chang WH, Fong LWR, et al. Targeting the insulin-like growth factor-1 receptor in MTAP-deficient renal cell carcinoma[J]. Signal Transduct Target Ther, 2019, 4: 2. DOI: 10.1038/s41392-019-0035-z. |
[54] |
Alhalabi O, Chen J, Zhang Y, et al. MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers[J]. Nat Commun, 2022, 13(1): 1797. DOI: 10.1038/s41467-022-29397-z.
pmid: 35379845 |
[55] |
Jing W, Zhu H, Liu W, et al. MTAP-deficiency could predict better treatment response in advanced lung adenocarcinoma patients initially treated with pemetrexed-platinum chemotherapy and bevacizumab[J]. Sci Rep, 2020, 10(1): 843. DOI: 10.1038/s41598-020-57812-2.
pmid: 31965001 |
[56] | Chang WH, Hsu SW, Zhang J, et al. MTAP deficiency contributes to immune landscape remodelling and tumour evasion[J]. Immunology, 2023, 168(2): 331-345. DOI: 10.1111/imm.13587. |
[57] |
Hansen LJ, Yang R, Roso K, et al. MTAP loss correlates with an immunosuppressive profile in GBM and its substrate MTA stimulates alternative macrophage polarization[J]. Sci Rep, 2022, 12(1): 4183. DOI: 10.1038/s41598-022-07697-0.
pmid: 35264604 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[3] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[4] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[5] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[6] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[7] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[8] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[9] | Chen Qi, Xu Chenyang, Wang Yin, Lei Dapeng. Current application status of hyperspectral imaging in the diagnosis and treatment of head and neck tumor [J]. Journal of International Oncology, 2024, 51(5): 298-302. |
[10] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[11] | Wan Fang, Yang Gang, Li Rui, Wan Qijing. Expression levels and clinical significance of serum miR-497 and miR-383 in patients with esophageal cancer [J]. Journal of International Oncology, 2024, 51(4): 204-209. |
[12] | Yao Yixin, Shen Yulin. Predictive value of serum SOCS3 and TXNIP levels for the prognosis of patients with hepatocellular carcinoma treated with TACE [J]. Journal of International Oncology, 2024, 51(4): 217-222. |
[13] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[14] | Zhang Lili, Tan Ru, Fang Xueli, Yang Yu, Sang Zheng, Li Baosheng. Imaging diagnosis, pathological upgrade, and imaging technology progress of ductal carcinoma in situ of the breast [J]. Journal of International Oncology, 2024, 51(3): 166-169. |
[15] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||