Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (9): 564-567.doi: 10.3760/cma.j.cn371439-20210517-00110
• Reviews • Previous Articles Next Articles
Zhu Feng, Wang Shiwen, Xian Jingrong, Liu Yue, Zhao Hu, Zhang Yanmei()
Received:
2021-05-17
Revised:
2021-06-17
Online:
2021-09-08
Published:
2021-09-22
Contact:
Zhang Yanmei
E-mail:15618653286@163.com
Supported by:
Zhu Feng, Wang Shiwen, Xian Jingrong, Liu Yue, Zhao Hu, Zhang Yanmei. Research on the anti-lung cancer effects of targeted Neddylation modifying pathway and its inhibitor MLN4924 and its mechanism[J]. Journal of International Oncology, 2021, 48(9): 564-567.
[1] |
明超, 何锐, 孙远, 等. lncRNA与小细胞肺癌[J]. 国际肿瘤学杂志, 2019, 46(10):620-623. DOI: 10.3760/cma.j.issn.1673-422X.2019.10.011.
doi: 10.3760/cma.j.issn.1673-422X.2019.10.011 |
[2] |
Xu Q, Lin G, Xu H, et al. MLN4924 neddylation inhibitor promotes cell death in paclitaxel-resistant human lung adenocarcinoma cells[J]. Oncol Lett, 2018, 15(1):515-521. DOI: 10.3892/ol.2017.7314.
doi: 10.3892/ol.2017.7314 |
[3] |
Ni S, Chen X, Yu Q, et al. Discovery of candesartan cilexetic as a novel neddylation inhibitor for suppressing tumor growth[J]. Eur J Med Chem, 2020, 185:111848. DOI: 10.1016/j.ejmech.2019.111848.
doi: 10.1016/j.ejmech.2019.111848 |
[4] |
Zhou L, Zhang W, Sun Y, et al. Protein neddylation and its alterations in human cancers for targeted therapy[J]. Cell Signal, 2018, 44:92-102. DOI: 10.1016/j.cellsig.2018.01.009.
doi: 10.1016/j.cellsig.2018.01.009 |
[5] |
Liang Y, Jiang Y, Jin X, et al. Neddylation inhibition activates the protective autophagy through NF-kappaB-catalase-ATF3 axis in human esophageal cancer cells[J]. Cell Commun Signal, 2020, 18(1):72. DOI: 10.1186/s12964-020-00576-z.
doi: 10.1186/s12964-020-00576-z |
[6] |
Chen P, Hu T, Liang Y, et al. Neddylation inhibition activates the extrinsic apoptosis pathway through ATF4-CHOP-DR5 axis in human esophageal cancer cells[J]. Clin Cancer Res, 2016, 22(16):4145-4157. DOI: 10.1158/1078-0432.CCR-15-2254.
doi: 10.1158/1078-0432.CCR-15-2254 |
[7] |
Li L, Kang J, Zhang W, et al. Validation of NEDD8-conjugating enzyme UBC12 as a new therapeutic target in lung cancer[J]. EBioMedicine, 2019, 45:81-91. DOI: 10.1016/j.ebiom.2019.06.005.
doi: 10.1016/j.ebiom.2019.06.005 |
[8] |
Jiang Y, Cheng W, Li L, et al. Effective targeting of the ubiquitin-like modifier NEDD8 for lung adenocarcinoma treatment[J]. Cell Biol Toxicol, 2020, 36(4):349-364. DOI: 10.1007/s10565-019-09503-6.
doi: 10.1007/s10565-019-09503-6 |
[9] |
Zhou L, Jiang Y, Liu X, et al. Promotion of tumor-associated macrophages infiltration by elevated neddylation pathway via NF-kappaB-CCL2 signaling in lung cancer[J]. Oncogene, 2019, 38(29):5792-5804. DOI: 10.1038/s41388-019-0840-4.
doi: 10.1038/s41388-019-0840-4 |
[10] |
Zhou W, Xu J, Tan M, et al. UBE2M is a stress-inducible dual E2 for Neddylation and ubiquitylation that promotes targeted degradation of UBE2F[J]. Mol Cell, 2018, 70(6):1008-1024. e6. DOI: 10.1016/j.molcel.2018.06.002.
doi: 10.1016/j.molcel.2018.06.002 |
[11] |
Zhou W, Xu J, Li H, et al. Neddylation E2 UBE2F promotes the survival of lung cancer cells by activating CRL5 to degrade NOXA via the K11 linkage[J]. Clin Cancer Res, 2017, 23(4):1104-1116. DOI: 10.1158/1078-0432.CCR-16-1585.
doi: 10.1158/1078-0432.CCR-16-1585 |
[12] |
Li H, Tan M, Jia L, et al. Inactivation of SAG/RBX2 E3 ubiquitin ligase suppresses KrasG12D-driven lung tumorigenesis[J]. J Clin Invest, 2014, 124(2):835-846. DOI: 10.1172/JCI70297.
doi: 10.1172/JCI70297 |
[13] |
Zhao G, Gong L, Su D, et al. Cullin5 deficiency promotes small-cell lung cancer metastasis by stabilizing integrin beta1[J]. J Clin Invest, 2019, 129(3):972-987. DOI: 10.1172/JCI122779.
doi: 10.1172/JCI122779 |
[14] |
Hung MS, Chen IC, You L, et al. Knockdown of cullin 4A inhibits growth and increases chemosensitivity in lung cancer cells[J]. J Cell Mol Med, 2016, 20(7):1295-1306. DOI: 10.1111/jcmm.12811.
doi: 10.1111/jcmm.12811 |
[15] |
Zhou J, Zhang S, Xu Y, et al. Cullin 3 overexpression inhibits lung cancer metastasis and is associated with survival of lung adenocarcinoma[J]. Clin Exp Metastasis, 2020, 37(1):115-124. DOI: 10.1007/s10585-019-09988-9.
doi: 10.1007/s10585-019-09988-9 |
[16] |
Ohta E, Itoh M, Ueda M, et al. Cullin-4B E3 ubiquitin ligase mediates Apaf-1 ubiquitination to regulate caspase-9 activity[J]. PLoS One, 2019, 14(7):e0219782. DOI: 10.1371/journal.pone.0219782.
doi: 10.1371/journal.pone.0219782 |
[17] |
Zhang H, Wang A, Tan Y, et al. NCBP1 promotes the development of lung adenocarcinoma through up-regulation of CUL4B[J]. J Cell Mol Med, 2019, 23(10):6965-6977. DOI: 10.1111/jcmm.14581.
doi: 10.1111/jcmm.14581 |
[18] |
Jia L, Yan F, Cao W, et al. Dysregulation of CUL4A and CUL4B ubiquitin ligases in lung cancer[J]. J Biol Chem, 2017, 292(7):2966-2978. DOI: 10.1074/jbc.M116.765230.
doi: 10.1074/jbc.M116.765230 |
[19] |
Mao H, Sun Y. Neddylation-independent activities of MLN4924[J]. Adv Exp Med Biol, 2020, 1217:363-372. DOI: 10.1007/978-981-15-1025-0_21.
doi: 10.1007/978-981-15-1025-0_21 |
[20] |
Lin S, Shang Z, Li S, et al. Neddylation inhibitor MLN4924 induces G2 cell cycle arrest, DNA damage and sensitizes esophageal squamous cell carcinoma cells to cisplatin[J]. Oncol Lett, 2018, 15(2):2583-2589. DOI: 10.3892/ol.2017.7616.
doi: 10.3892/ol.2017.7616 pmid: 29434977 |
[21] |
Cheng X, Ferrell JE Jr. Apoptosis propagates through the cytoplasm as trigger waves[J]. Science, 2018, 361(6402):607-612. DOI: 10.1126/science.aah4065.
doi: 10.1126/science.aah4065 |
[22] |
Wang Y, Luo Z, Pan Y, et al. Targeting protein neddylation with an NEDD8-activating enzyme inhibitor MLN4924 induced apoptosis or senescence in human lymphoma cells[J]. Cancer Biol Ther, 2015, 16(3):420-429. DOI: 10.1080/15384047.2014.1003003.
doi: 10.1080/15384047.2014.1003003 |
[23] |
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence[J]. Trends Cell Biol, 2018, 28(6):436-453. DOI: 10.1016/j.tcb.2018.02.001.
doi: S0962-8924(18)30020-5 pmid: 29477613 |
[24] |
Li L, Wang M, Yu G, et al. Overactivated neddylation pathway as a therapeutic target in lung cancer[J]. J Natl Cancer Inst, 2014, 106(6):dju083. DOI: 10.1093/jnci/dju083.
doi: 10.1093/jnci/dju083 |
[25] |
Wood EA, Lu Z, Jia S, et al. Pevonedistat targeted therapy inhibits canine melanoma cell growth through induction of DNA re-replication and senescence[J]. Vet Comp Oncol, 2020, 18(3):269-280. DOI: 10.1111/vco.12546.
doi: 10.1111/vco.12546 |
[26] |
Zhou L, Jiang Y, Luo Q, et al. Neddylation: a novel modulator of the tumor microenvironment[J]. Mol Cancer, 2019, 18(1):77. DOI: 10.1186/s12943-019-0979-1.
doi: 10.1186/s12943-019-0979-1 |
[27] |
Jiang Y, Liang Y, Li L, et al. Targeting neddylation inhibits intravascular survival and extravasation of cancer cells to prevent lung-cancer metastasis[J]. Cell Biol Toxicol, 2019, 35(3):233-245. DOI: 10.1007/s10565-019-09472-w.
doi: 10.1007/s10565-019-09472-w |
[28] |
Lan H, Tang Z, Jin H, et al. Neddylation inhibitor MLN4924 suppresses growth and migration of human gastric cancer cells[J]. Sci Rep, 2016, 6:24218. DOI: 10.1038/srep24218.
doi: 10.1038/srep24218 |
[29] |
Wei C, Yang C, Wang S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circula-ting tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1):64. DOI: 10.1186/s12943-019-0976-4.
doi: 10.1186/s12943-019-0976-4 |
[30] |
Kabir S, Cidado J, Andersen C, et al. The CUL5 ubiquitin ligase complex mediates resistance to CDK9 and MCL1 inhibitors in lung cancer cells[J]. Elife, 2019, 8:e44288. DOI: 10.7554/eLife.44288.
doi: 10.7554/eLife.44288 |
[31] |
Li H, Zhou W, Li L, et al. Inhibition of neddylation modification sensitizes pancreatic cancer cells to gemcitabine[J]. Neoplasia, 2017, 19(6):509-518. DOI: 10.1016/j.neo.2017.04.003.
doi: 10.1016/j.neo.2017.04.003 |
[32] |
Wang Y, Zhou Y, Zheng Z, et al. Sulforaphane metabolites reduce resistance to paclitaxel via microtubule disruption[J]. Cell Death Dis, 2018, 9(11):1134. DOI: 10.1038/s41419-018-1174-9.
doi: 10.1038/s41419-018-1174-9 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[3] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[4] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[5] | He Jiahui, Hu Qinyong. Comparative analysis of lung cancer incidence and mortality trends and risk factors in China and the United States based on GBD data [J]. Journal of International Oncology, 2024, 51(1): 29-36. |
[6] | Huang Hui, Ding Jianghua. Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma [J]. Journal of International Oncology, 2023, 50(9): 569-573. |
[7] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[8] | Liu Li, Zhu Siqi, Sun Mengying, He Jingdong. Progress of PARP inhibitors in targeted therapy of small cell lung cancer [J]. Journal of International Oncology, 2023, 50(6): 368-372. |
[9] | Liu Bohan, Huang Junxing. Research progress of solute carriers related genes in malignant tumors [J]. Journal of International Oncology, 2023, 50(5): 280-284. |
[10] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[11] | Zuo Xiaoping, Liu Xiaochuan, Wu Xiqiang, Li Zhou, Xia Tian, Liu Guofeng. Risk factors and prediction model construction of arrhythmia in elderly patients with early lung cancer after thoracoscopic pulmonary resection [J]. Journal of International Oncology, 2023, 50(12): 711-716. |
[12] | Deng Lili, Duan Xingyu, Li Baozhong. Advances of anti-HER2 targeted drugs and combined therapeutic regimens for gastric and esophagogastic adenocarcinoma [J]. Journal of International Oncology, 2023, 50(12): 751-757. |
[13] | Liu Shaoping, Luo Hanchuan, Lin Shuhan, Luo Jiahui. Current status and research progress of interventional and systemic therapy for advanced hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(12): 758-762. |
[14] | Chen Yu, Xu Hua, Liu Hai, Chen Shixin. Construction of pathological classification prediction model for malignant pulmonary pure ground-glass nodule patients based on CT imaging [J]. Journal of International Oncology, 2023, 50(11): 655-660. |
[15] | Jiang Shan, Xu Ximing. Recent progresses of targeted therapy and immunotherapy of hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(11): 688-695. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||