Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (7): 391-396.doi: 10.3760/cma.j.cn371439-20190929-00043
• Orginal Article • Previous Articles Next Articles
Gao Jian1, Jin Yi2, Lin Jie1, Lin Sheng1, Duan Shan1()
Received:
2019-09-29
Revised:
2020-05-11
Online:
2020-07-08
Published:
2020-08-18
Contact:
Duan Shan
E-mail:szippl@163.com
Supported by:
Gao Jian, Jin Yi, Lin Jie, Lin Sheng, Duan Shan. Targeting role of CXCL10 and miR-34c-5p in invasive ductal carcinoma of breast[J]. Journal of International Oncology, 2020, 47(7): 391-396.
"
临床病理特征a | 例数 | CXCL10 mRNA( | t/F值 | P值 | miR-34c-5p mRNA[M (P25,P75)] | Z/χ2值 | P值 |
---|---|---|---|---|---|---|---|
年龄(岁) | |||||||
≤50 | 26 | 6.861±1.431 | -1.472 | 0.147 | 1.448(1.077,2.614) | -0.378 | 0.706 |
<50 | 30 | 7.373±1.175 | 1.286(0.946,2.047) | ||||
组织学分级 | |||||||
Ⅰ | 7 | 7.814±1.700 | 0.808(0.600,1.122) | ||||
Ⅱ | 34 | 6.867±1.310 | 2.369 | 0.104 | 1.466(1.151,2.205) | 8.626 | 0.013 |
Ⅲ | 13 | 7.559±1.003 | 1.291(1.005,2.117) | ||||
ER/PR | |||||||
单/双阳性 | 40 | 6.954±1.238 | -1.656 | 0.103 | 1.466(1.142,2.055) | -2.195 | 0.028 |
双阴性 | 16 | 7.588±1.427 | 1.027(0.746,1.959) | ||||
Her-2 | |||||||
阳性 | 22 | 7.656±1.325 | 2.415 | 0.019 | 1.244(0.914,1.704) | -1.320 | 0.187 |
阴性 | 32 | 6.803±1.242 | 1.497(1.124,2.504) | ||||
Ki-67 | |||||||
≥14% | 45 | 7.358±1.315 | 2.483 | 0.016 | 1.291(0.942,2.055) | -0.458 | 0.647 |
<14% | 10 | 6.270±0.889 | 1.365(1.151,2.261) |
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424. DOI: 10.3322/caac.21492.
doi: 10.3322/caac.21492 pmid: 30207593 |
[2] | 中国抗癌协会乳腺癌专业委员会. 中国晚期乳腺癌临床诊疗专家共识(2018版)[J]. 中华肿瘤杂志, 2018,40(9):703-713. DOI: 10.3760/cma.j.issn.0253-3766.2018.09.013. |
[3] |
Karin N, Razon H. Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity[J]. Cytokine, 2018,109:24-28. DOI: 10.1016/j.cyto.2018.02.012.
doi: 10.1016/j.cyto.2018.02.012 pmid: 29449068 |
[4] |
Tokunaga R, Zhang W, Naseem M, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation—a target for novel cancer therapy[J]. Cancer Treat Rev, 2018,63:40-47. DOI: 10.1016/j.ctrv.2017.11.007.
doi: 10.1016/j.ctrv.2017.11.007 pmid: 29207310 |
[5] |
Bronger H, Singer J, Windmüller C, et al. CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer[J]. Br J Cancer, 2016,115(5):553-563. DOI: 10.1038/bjc.2016.172.
pmid: 27490802 |
[6] |
Goldberg-Bittman L, Neumark E, Sagi-Assif O, et al. The expression of the chemokine receptor CXCR3 and its ligand, CXCL10, in human breast adenocarcinoma cell lines[J]. Immunol lett, 2004,92(1-2):171-178. DOI: 10.1016/j.imlet.2003.10.020.
pmid: 15081542 |
[7] |
Liu M, Guo S, Stiles JK. The emerging role of CXCL10 in cancer (review)[J]. Oncol Lett, 2011,2(4):583-589. DOI: 10.3892/ol.2011.300.
pmid: 22848232 |
[8] |
Hermeking H. The miR-34 family in cancer and apoptosis[J]. Cell Death Differ, 2010,17(2):193-199. DOI: 10.1038/cdd.2009.56.
pmid: 19461653 |
[9] |
Zhang L, Liao Y, Tang L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer[J]. J Exp Clin Cancer Res, 2019,38(1):53. DOI: 10.1186/s13046-019-1059-5.
doi: 10.1186/s13046-019-1059-5 pmid: 30717802 |
[10] |
Li F, Chen H, Huang Y, et al. miR-34c plays a role of tumor suppressor in HEC 1-B cells by targeting E2F3 protein[J]. Oncol Rep, 2015,33(6):3069-3074. DOI: 10.3892/or.2015.3894.
doi: 10.3892/or.2015.3894 pmid: 25846116 |
[11] | 夏丽华. 探讨女性乳腺浸润性导管癌的乳腺X线影像学特征[J]. 中外女性健康研究, 2017, (8):14, 83. DOI: 10.3969/j.issn.2096-0417.2017.08.010. |
[12] |
Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China[J]. Lancet Oncol, 2014,15(7):e279-e289. DOI: 10.1016/S1470-2045(13)70567-9.
doi: 10.1016/S1470-2045(13)70567-9 pmid: 24872111 |
[13] |
Ejaeidi AA, Craft BS, Puneky LV, et al. Hormone receptor-independent CXCL10 production is associated with the regulation of cellular factors linked to breast cancer progression and metastasis[J]. Exp Mol Pathol, 2015,99(1):163-172. DOI: 10.1016/j.yexmp.2015.06.002.
pmid: 26079660 |
[14] |
Narita D, Seclaman E, Anghel A, et al. Altered levels of plasma chemokines in breast cancer and their association with clinical and pathological characteristics[J]. Neoplasma, 2016,63(1):141-149. DOI: 10.4149/neo_2016_017.
doi: 10.4149/neo_2016_017 pmid: 26639244 |
[15] |
Jafarzadeh A, Fooladseresht H, Nemati M, et al. Higher circulating levels of chemokine CXCL10 in patients with breast cancer: evalu-ation of the influences of tumor stage and chemokine gene polymorphism[J]. Cancer Biomark, 2016,16(4):545-554. DOI: 10.3233/CBM-160596.
doi: 10.3233/CBM-160596 pmid: 27002757 |
[16] |
Bu H, Shu B, Gao F, et al. Spinal IFN-γ-induced protein-10 (CXCL10) mediates metastatic breast cancer-induced bone pain by activation of microglia in rat models[J]. Breast Cancer Res Treat, 2014,143(2):255-263. DOI: 10.1007/s10549-013-2807-4.
doi: 10.1007/s10549-013-2807-4 pmid: 24337539 |
[17] | 夏红强, 何建蓉. Ki-67、EGFR、HER-2和P53在乳腺癌中的表达及其相关性[J]. 临床肿瘤学杂志, 2011,16(2):139-143. DOI: 10.3969/j.issn.1009-0460.2011.02.010. |
[18] | 马士辉, 凌飞海. 乳腺癌组织中HER-2、TOPOⅡα、Ki-67的表达及临床意义[J]. 哈尔滨医药, 2016,36(5):504-506. |
[19] |
Wang Y, Wang X, Tang J, et al. The study of mechanism of miR-34c-5p targeting FLOT2 to regulate proliferation, migration and invasion of osteosarcoma cells[J]. Artif Cells Nanomed Biotechnol, 2019,47(1):3559-3568. DOI: 10.1080/21691401.2019.1640714.
doi: 10.1080/21691401.2019.1640714 pmid: 31446795 |
[20] |
Li F, Chen H, Huang Y, et al. miR-34c plays a role of tumor suppressor in HEC 1-B cells by targeting E2F3 protein[J]. Oncol Rep, 2015,33(6):3069-3074. DOI: 10.3892/or.2015.3894.
pmid: 25846116 |
[21] | Córdova-Rivas S, Fraire-Soto I, Mercado-Casas Torres A, et al. 5p and 3p strands of miR-34 family members have differential effects in cell proliferation, migration, and invasion in cervical cancer cells[J]. Int J Mol Sci, 2019,20(3):545. DOI: 10.3390/ijms20030545. |
[22] |
Re M, Magliulo G, Gioacchini FM, et al. Expression levels and clinical significance of miR-21-5p, miR-let-7a, and miR-34c-5p in laryngeal squamous cell carcinoma[J]. Biomed Res Int, 2017,2017:3921258. DOI: 10.1155/2017/3921258.
doi: 10.1155/2017/3781525 pmid: 29457024 |
[23] |
Si W, Li Y, Shao H, et al. MiR-34a inhibits breast cancer proliferation and progression by targeting Wnt1 in Wnt/β-Catenin signaling pathway[J]. Am J Med Sci, 2016,352(2):191-199. DOI: 10.1016/j.amjms.2016.05.002.
doi: 10.1016/j.amjms.2016.05.002 pmid: 27524218 |
[24] |
Xu M, Li D, Yang C, et al. MicroRNA-34a inhibition of the TLR signaling pathway via CXCL10 suppresses breast cancer cell invasion and migration[J]. Cell Physiol Biochem, 2018,46(3):1286-1304. DOI: 10.1159/000489111.
doi: 10.1159/000489111 pmid: 29689563 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[3] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[4] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[5] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[6] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. |
[7] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. |
[8] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[9] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[10] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. |
[11] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[12] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[13] | Zhou Ting, Xu Shaohua, Mei Lin. Efficacy and safety of bevacizumab combined with capecitabine in the treatment of advanced breast cancer [J]. Journal of International Oncology, 2023, 50(3): 144-149. |
[14] | Li Lixi, Zhang Di, Luo Yang, Ma Fei. Clinical application of PARP inhibitors in breast cancer [J]. Journal of International Oncology, 2023, 50(2): 91-96. |
[15] | Geng Rui, Ma Junqiang, Guo Qiang, Niu Zhaofeng. Tendency of elderly patients with breast cancer to choose comprehensive treatment mode and its influencing factors [J]. Journal of International Oncology, 2023, 50(11): 650-654. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||