
Journal of International Oncology ›› 2026, Vol. 53 ›› Issue (3): 187-192.doi: 10.3760/cma.j.cn371439-20250712-00031
• Review • Previous Articles
Yang Qing1, He Xiyan2, Sun Xiaotong2(
)
Received:2025-07-12
Online:2026-03-08
Published:2026-02-09
Contact:
Sun Xiaotong
E-mail:18893498631@163.com
Yang Qing, He Xiyan, Sun Xiaotong. Research progress of ferroptosis in cervical cancer[J]. Journal of International Oncology, 2026, 53(3): 187-192.
| [1] | 马雪艳, 鲁历历, 孙鹏飞. 免疫微环境在宫颈癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 47-50. DOI: 10.3760/cma.j.cn371439-20220715-00009. |
| [2] | 曾浩然, 陈晓琪, 纪妹. 84例非HPV相关宫颈腺癌临床病理分析[J]. 现代妇产科进展, 2025, 34(4): 264-268. DOI: 10.13283/j.cnki.xdfckjz.2025.04.003. |
| [3] |
Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: tumor suppression, tumor microenvironment, and therapeutic interventions[J]. Cancer Cell, 2024, 42(4): 513-534. DOI: 10.1016/j.ccell.2024.03.011.
pmid: 38593779 |
| [4] |
Cui K, Wang K, Huang Z. Ferroptosis and the tumor microenvironment[J]. J Exp Clin Cancer Res, 2024, 43(1): 315. DOI: 10.1186/s13046-024-03235-0.
pmid: 39614322 |
| [5] | Sun S, Shen J, Jiang J, et al. Targeting ferroptosis opens new avenues for the development of novel therapeutics[J]. Signal Transduct Target Ther, 2023, 8(1): 372. DOI: 10.1038/s41392-023-01606-1. |
| [6] | Jacquemyn J, Ralhan I, Ioannou MS. Driving factors of neuronal ferroptosis[J]. Trends Cell Biol, 2024, 34(7): 535-546. DOI: 10.1016/j.tcb.2024.01.010. |
| [7] | 叶敏, 郭秀英, 王丹心, 等. 中药靶向铁死亡治疗呼吸系统疾病的作用机制[J]. 生命的化学, 2025, 45(3): 440-449. DOI: 10.13488/j.smhx.20240659. |
| [8] | 陈悦, 陈雯昕, 蒋溢, 等. 宫颈癌预后相关铁死亡基因的筛选及其预后模型的构建[J]. 中国临床医学, 2025, 32(2): 259-267. DOI: 10.12025/j.issn.1008-6358.2025.20241404. |
| [9] | Arizmendi-Izazaga A, Navarro-Tito N, Jiménez-Wences H, et al. Metabolic reprogramming in cancer: role of HPV 16 variants[J]. Pathogens, 2021, 10(3): 347. DOI: 10.3390/pathogens10030347. |
| [10] | Chen S, Shen L, Luo S, et al. Association between serum iron levels and the risk of cervical cancer in Chinese: a meta-analysis[J]. J Int Med Res, 2020, 48(3): 300060519882804. DOI: 10.1177/0300060519882804. |
| [11] |
Braun JA, Herrmann AL, Blase JI, et al. Effects of the antifungal agent ciclopirox in HPV-positive cancer cells: repression of viral E6/E7 oncogene expression and induction of senescence and apoptosis[J]. Int J Cancer, 2020, 146(2): 461-474. DOI: 10.1002/ijc.32709.
pmid: 31603527 |
| [12] | Huang N, Wei Y, Cheng Y, et al. Iron metabolism protein transferrin receptor 1 involves in cervical cancer progression by affecting gene expression and alternative splicing in HeLa cells[J]. Genes Genomics, 2022, 44(6): 637-650. DOI: 10.1007/s13258-021-01205-w. |
| [13] | Jiang X, Peng Q, Peng M, et al. Cellular metabolism: a key player in cancer ferroptosis[J]. Cancer Commun, 2024, 44(2): 185-204. DOI: 10.1002/cac2.12519. |
| [14] |
Hu X, He Y, Han Z, et al. PNO1 inhibits autophagy-mediated ferroptosis by GSH metabolic reprogramming in hepatocellular carcinoma[J]. Cell Death Dis, 2022, 13(11): 1010. DOI: 10.1038/s41419-022-05448-7.
pmid: 36446769 |
| [15] |
Kobayashi H, Yoshimoto C, Matsubara S, et al. A comprehensive overview of recent developments on the mechanisms and pathways of ferroptosis in cancer: the potential implications for therapeutic strategies in ovarian cancer[J]. Cancer Drug Resist, 2023, 6(3): 547-566. DOI: 10.20517/cdr.2023.49.
pmid: 37842240 |
| [16] | Kim JW, Lee JY, Oh M, et al. An integrated view of lipid metabolism in ferroptosis revisited via lipidomic analysis[J]. Exp Mol Med, 2023, 55(8): 1620-1631. DOI: 10.1038/s12276-023-01077-y. |
| [17] |
Guo W, Duan Z, Wu J, et al. Epithelial-mesenchymal transition promotes metabolic reprogramming to suppress ferroptosis[J]. Semin Cancer Biol, 2025, 112: 20-35. DOI: 10.1016/j.semcancer.2025.02.013.
pmid: 40058616 |
| [18] | Rochette L, Dogon G, Rigal E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis[J]. Int J Mol Sci, 2022, 24(1): 449. DOI: 10.3390/ijms24010449. |
| [19] | Liu C, Liu Z, Dong Z, et al. Multifaceted interplays between the essential players and lipid peroxidation in ferroptosis[J]. J Genet Genomics, 2025, 52(9): 1071-1081. DOI: 10.1016/j.jgg.2025.01.009. |
| [20] | Yang M, Cui W, Lv X, et al. S100P is a ferroptosis suppressor to facilitate hepatocellular carcinoma development by rewiring lipid metabolism[J]. Nat Commun, 2025, 16(1): 509. DOI: 10.1038/s41467-024-55785-8. |
| [21] |
Taber A, Christensen E, Lamy P, et al. Author correction: molecular correlates of cisplatin-based chemotherapy response in muscle invasive bladder cancer by integrated multi-omics analysis[J]. Nat Commun, 2022, 13(1): 1916. DOI: 10.1038/s41467-022-29627-4.
pmid: 35379819 |
| [22] | Liu Y, Li L, Yang Z, et al. Circular RNA circACAP2 suppresses ferroptosis of cervical cancer during malignant progression by miR-193a-5p/GPX4[J]. J Oncol, 2022, 2022: 5228874. DOI: 10.1155/2022/5228874. |
| [23] | Wu P, Li C, Ye DM, et al. Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis[J]. Aging (Albany NY), 2021, 13(3): 4663-4673. DOI: 10.18632/aging.202518. |
| [24] | Ou R, Lu S, Wang L, et al. Circular RNA circLMO1 suppresses cervical cancer growth and metastasis by triggering miR-4291/ACSL4-mediated ferroptosis[J]. Front Oncol, 2022, 12: 858598. DOI: 10.3389/fonc.2022.858598. |
| [25] | Lu X, Zhang W, Zhang J, et al. EPAS1, a hypoxia-and ferroptosis-related gene, promotes malignant behaviour of cervical cancer by ceRNA and super-enhancer[J]. J Cell Mol Med, 2024, 28(9): e18361. DOI: 10.1111/jcmm.18361. |
| [26] | Yan R, Lin B, Jin W, et al. NRF2, a superstar of ferroptosis[J]. Antioxidants (Basel), 2023, 12(9): 1739. DOI: 10.3390/antiox12091739. |
| [27] | Zhang Z, Hu Q, Ye S, et al. Inhibition of the PIN1-NRF2/GPX4 axis imparts sensitivity to cisplatin in cervical cancer cells[J]. Acta Biochim Biophys Sin (Shanghai), 2022, 54(9): 1325-1335. DOI: 10.3724/abbs.2022109. |
| [28] | Tie W, Ge F. Lymphoid-specific helicase inhibits cervical cancer cells ferroptosis by promoting Nrf2 expression[J]. PeerJ, 2023, 11: e16451. DOI: 10.7717/peerj.16451. |
| [29] | Tossetta G, Marzioni D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers[J]. Eur J Pharmacol, 2023, 941: 175503. DOI: 10.1016/j.ejphar.2023.175503. |
| [30] | Zhang S, Jin S, Zhang S, et al. Vitexin protects against high glucose-induced endothelial cell apoptosis and oxidative stress via wnt/β-catenin and Nrf2 signalling pathway[J]. Arch Physiol Biochem, 2024, 130(3): 275-284. DOI: 10.1080/13813455.2022.2028845. |
| [31] | Shi JX, Zhang ZC, Yin HZ, et al. RNA m6A modification in ferroptosis: implications for advancing tumor immunotherapy[J]. Mol Cancer, 2024, 23(1): 213. DOI: 10.1186/s12943-024-02132-6. |
| [32] | Gong Y, Luo G, Zhang S, et al. Transcriptome sequencing analysis reveals miR-30c-5p promotes ferroptosis in cervical cancer and inhibits growth and metastasis of cervical cancer xenografts by targeting the METTL3/KRAS axis[J]. Cell Signal, 2024, 117: 111068. DOI: 10.1016/j.cellsig.2024.111068. |
| [33] | Min L, Huo F, Zhu Z, et al. Mechanistic study of METTL3 inducing ferroptosis to promote cervical cancer progression through mediating m6A modification of COTE-1[J]. Cell Signal, 2025, 128: 111649. DOI: 10.1016/j.cellsig.2025.111649. |
| [34] | Li L, Zeng J, He S, et al. METTL14 decreases FTH1 mRNA stability via m6A methylation to promote sorafenib-induced ferroptosis of cervical cancer[J]. Cancer Biol Ther, 2024, 25(1): 2349429. DOI: 10.1080/15384047.2024.2349429. |
| [35] | Dong Y, Chang W, Lu B, et al. METTL5-mediated m6A modification of SLC7A11 promotes cervical cancer by inhibiting ferroptosis[J]. Int J Biochem Cell Biol, 2025, 186: 106822. DOI: 10.1016/j.biocel.2025.106822. |
| [36] | Zhang J, Tan B, Wu H, et al. Scutellaria baicalensis extracts restrict intestinal epithelial cell ferroptosis by regulating lipid peroxidation and GPX4/ACSL4 in colitis[J]. Phytomedicine, 2025, 141: 156708. DOI: 10.1016/j.phymed.2025.156708. |
| [37] | Zhao MY, Liu P, Sun C, et al. Propofol augments paclitaxel-induced cervical cancer cell ferroptosis in vitro[J]. Front Pharmacol, 2022, 13: 816432. DOI: 10.3389/fphar.2022.816432. |
| [38] | Xiaofei J, Mingqing S, Miao S, et al. Oleanolic acid inhibits cervical cancer Hela cell proliferation through modulation of the ACSL4 ferroptosis signaling pathway[J]. Biochem Biophys Res Commun, 2021, 545: 81-88. DOI: 10.1016/j.bbrc.2021.01.028. |
| [39] | Hou X, Yang L, Wang K, et al. HELLS, a chromatin remodeler is highly expressed in pancreatic cancer and downregulation of it impairs tumor growth and sensitizes to cisplatin by reexpressing the tumor suppressor TGFBR3[J]. Cancer Med, 2021, 10(1): 350-364. DOI: 10.1002/cam4.3627. |
| [40] | Han S, Wang S, Lv X, et al. Ferroptosis-related genes in cervical cancer as biomarkers for predicting the prognosis of gynecological tumors[J]. Front Mol Biosci, 2023, 10: 1188027. DOI: 10.3389/fmolb.2023.1188027. |
| [41] | Qin W, He C, Jiang D, et al. Systematic construction and validation of a novel ferroptosis-related gene model for predicting prognosis in cervical cancer[J]. J Immunol Res, 2022, 2022: 2148215. DOI: 10.1155/2022/2148215. |
| [42] | Toledo RA, Jimenez C, Armaiz-Pena G, et al. Hypoxia-inducible factor 2 alpha (HIF2α) inhibitors: targeting genetically driven tumor hypoxia[J]. Endocr Rev, 2023, 44(2): 312-322. DOI: 10.1210/endrev/bnac025. |
| [43] |
Zhou H, Chen J, Fan M, et al. KLF14 regulates the growth of hepatocellular carcinoma cells via its modulation of iron homeostasis through the repression of iron-responsive element-binding protein 2[J]. J Exp Clin Cancer Res, 2023, 42(1): 5. DOI: 10.1186/s13046-022-02562-4.
pmid: 36600258 |
| [44] |
Lyu X, Ding X, Ye H, et al. KLF14 targets ITGB1 to inhibit the progression of cervical cancer via the PI3K/AKT signalling pathway[J]. Discov Oncol, 2022, 13(1): 30. DOI: 10.1007/s12672-022-00494-1.
pmid: 35570248 |
| [45] | Du Y, Ye H, Lin M, et al. KLF14 activates the JNK-signaling pathway to induce S-phase arrest in cervical cancer cells[J]. Front Immunol, 2023, 14: 1267950. DOI: 10.3389/fimmu.2023.1267950. |
| [46] |
Ye H, Ding X, Lv X, et al. KLF14 directly downregulates the expression of GPX4 to exert antitumor effects by promoting ferroptosis in cervical cancer[J]. J Transl Med, 2024, 22(1): 923. DOI: 10.1186/s12967-024-05714-6.
pmid: 39390559 |
| [47] |
Ruprecht JJ, Kunji ERS. The SLC25 mitochondrial carrier family: structure and mechanism[J]. Trends Biochem Sci, 2020, 45(3): 244-258. DOI: 10.1016/j.tibs.2019.11.001.
pmid: 31787485 |
| [48] | Chen G, Mo S, Yuan D. Upregulation mitochondrial carrier 1 (MTCH1) is associated with cell proliferation, invasion, and migration of liver hepatocellular carcinoma[J]. Biomed Res Int, 2021, 2021: 9911784. DOI: 10.1155/2021/9911784. |
| [49] |
Wang X, Ji Y, Qi J, et al. Mitochondrial carrier 1 (MTCH1) governs ferroptosis by triggering the FoxO1-GPX4 axis-mediated retrograde signaling in cervical cancer cells[J]. Cell Death Dis, 2023, 14(8): 508. DOI: 10.1038/s41419-023-06033-2.
pmid: 37550282 |
| [50] | 杨加宁, 张立然. 雷帕霉素抑制mTOR激活自噬并调控铁死亡降低宫颈癌细胞增殖、侵袭及迁移能力的实验研究[J]. 现代检验医学杂志, 2025, 40(3): 42-46. DOI: 10.3969/j.issn.1671-7414.2025.03.008. |
| [51] | Kumar L, Upadhyay A, Jayaraj AS. Chemotherapy and immune check point inhibitors in the management of cervical cancer[J]. Curr Probl Cancer, 2022, 46(6): 100900. DOI: 10.1016/j.currproblcancer.2022.100900. |
| [52] | 张鹏, 葛亮, 孔令国, 等. 咪达唑仑通过调节Nrf2/HO-1信号通路对宫颈癌细胞铁死亡的作用及机制研究[J]. 实用医学杂志, 2023, 39(14): 1740-1745. DOI: 10.3969/j.issn.1006-5725.2023.14.003. |
| [53] | Jin J, Fan Z, Long Y, et al. Matrine induces ferroptosis in cervical cancer through activation of piezo1 channel[J]. Phytomedicine, 2024, 122: 155165. DOI: 10.1016/j.phymed.2023.155165. |
| [54] | Alakkal A, Thayyullathil F, Pallichankandy S, et al. Sanguinarine induces H2O2-dependent apoptosis and ferroptosis in human cervical cancer[J]. Biomedicines, 2022, 10(8): 1795. DOI: 10.3390/biomedicines10081795. |
| [55] | 董晶晶, 石少卿, 李玉琼, 等. 土荆皮乙酸上调HMOX1诱导宫颈癌Siha细胞凋亡和铁死亡[J]. 现代肿瘤医学, 2024, 32(18): 3413-3419. DOI: 10.3969/j.issn.1672-4992.2024.18.003. |
| [56] | Samare-Najaf M, Samareh A, Savardashtaki A, et al. Non-apoptotic cell death programs in cervical cancer with an emphasis on ferroptosis[J]. Crit Rev Oncol Hematol, 2024, 194: 104249. DOI: 10.1016/j.critrevonc.2023.104249. |
| [57] |
Yong X, Zhang Y, Tang H, et al. CDKN2A inhibited ferroptosis through activating JAK2/STAT3 pathway to modulate cisplatin resistance in cervical squamous cell carcinoma[J]. Anticancer Drugs, 2024, 35(8): 698-708. DOI: 10.1097/CAD.00000000000 01620.
pmid: 38748610 |
| [58] | Jiang L, Duan B, Jia P, et al. The role of intratumor microbiomes in cervical cancer metastasis[J]. Cancers (Basel), 2023, 15(2): 509. DOI: 10.3390/cancers15020509. |
| [59] | Li P, Lv X, Liu L, et al. The role of ferroptosis-related molecules and significance of ferroptosis score in cervical cancer[J]. J Oncol, 2022, 2022: 7835698. DOI: 10.1155/2022/7835698. |
| [1] | Shi Haiyan, Ma Yan, Wang Ruoying, Shao Sarula, Guo Ruifang. Research progress of the VGLL1-TEAD4 complex in tumors [J]. Journal of International Oncology, 2026, 53(3): 174-177. |
| [2] | Zhang Baihong, Yue Hongyun. Advances in cancer chemotherapy in the era of precision medicine [J]. Journal of International Oncology, 2026, 53(3): 178-181. |
| [3] | Zhang Long, Li Jianzhen, Zhang Wei. Mechanisms of invadopodia in tumor metastasis and frontiers in therapeutic translation [J]. Journal of International Oncology, 2026, 53(2): 100-104. |
| [4] | Zhao Yue, Song Chenchen, Liang Tianci, Wang Hui, Wen Tingzhi, Rong Biaoxue. Research progress of molecular targeted therapy of ROS1 gene mutation in non-small cell lung cancer [J]. Journal of International Oncology, 2026, 53(2): 105-110. |
| [5] | Yu Yunpeng, Dai Chunhua, Ling Rui. Efficacy and safety of tislelizumab combined with chemotherapy in the treatment of advanced esophageal cancer [J]. Journal of International Oncology, 2026, 53(1): 31-37. |
| [6] | Zhao Yuan, Yao Wentao. Current status and challenges of neoadjuvant immunotherapy in malignant tumors [J]. Journal of International Oncology, 2026, 53(1): 47-52. |
| [7] | Wang Yu, Li Yuanfei, Guo Yuntong. Research progress of the immunoscore system in gastric cancer [J]. Journal of International Oncology, 2026, 53(1): 62-64. |
| [8] | Wu Songyou, Wang Gang, Wang Wenling, Dong Hongmin, Chen Weiwei, Li Xiaokai, Chen Wanghua, Zuo Kai. Prospective cohort study on the effect of abdominal circumference on the intestinal radiation dose volume and the acute intestinal toxicity in pelvic intensity modulated radiation therapy for rectal cancer patients [J]. Journal of International Oncology, 2025, 52(9): 566-575. |
| [9] | Che Gen, Wu Rihan, Zhu Tiantian, Dong Li. Mechanism of the cGAS-STING signaling pathway in non-small cell lung cancer and its targeted therapeutic strategies [J]. Journal of International Oncology, 2025, 52(9): 587-591. |
| [10] | Cheng Honglei, Wang Ti, Lan Zhidong, Gong Heyi. Value of clinical indicators in predicting the efficacy of neoadjuvant therapy for esophageal cancer [J]. Journal of International Oncology, 2025, 52(9): 592-597. |
| [11] | Radiation Oncology Professional Committee of the Chinese Research Hospital Association, Hebei Society of Mathematical and Physical Medicine, Tianjin Precision Medicine Society. Expert consensus on the clinical diagnosis and treatment of post-obstructive pneumonia in newly diagnosed lung cancer patients [J]. Journal of International Oncology, 2025, 52(8): 484-494. |
| [12] | Wu Xuehui, Li Song, Liu Lian. Clinical applications of TCR sequencing in cancer immunotherapy [J]. Journal of International Oncology, 2025, 52(8): 523-527. |
| [13] | Wu Xin, Ren Haipeng. Research progress of KRASG12C inhibitors in the treatment of advanced colorectal cancer [J]. Journal of International Oncology, 2025, 52(8): 538-542. |
| [14] | Liu Qi, Qu Guobin, Zhu Jian, Wu Fan. Feasibility study of using dual-energy CT virtual non-contrast images to replace true non-contrast images in photon and proton radiotherapy dose calculations [J]. Journal of International Oncology, 2025, 52(7): 401-408. |
| [15] | Zhu Jian. Preface to the dosimetric characteristic of proton radiotherapy for tumors [J]. Journal of International Oncology, 2025, 52(7): 432-433. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||