
Journal of International Oncology ›› 2026, Vol. 53 ›› Issue (1): 47-52.doi: 10.3760/cma.j.cn371439-20250513-00006
• Review • Previous Articles Next Articles
Received:2025-05-13
Online:2026-01-08
Published:2026-01-13
Contact:
Yao Wentao
E-mail:wentaoyao@sina.cn
Supported by:Zhao Yuan, Yao Wentao. Current status and challenges of neoadjuvant immunotherapy in malignant tumors[J]. Journal of International Oncology, 2026, 53(1): 47-52.
"
| 瘤种 | 注册号 | 期别 | 治疗方案 | 疗效指标 | 3~5级不良 事件发生率 | 参考文献 |
|---|---|---|---|---|---|---|
| 头颈部鳞状细胞癌 | NCT03247712 | Ⅰ期 | 纳武利尤单抗+放疗(15例) | MPR率:86%,pCR率:67% | 19% | [ |
| 非小细胞肺癌 | NCT03030131 | Ⅱ期 | 度伐利尤单抗(46例) | MPR率:19%,12个月生存率:89%, 12个月无瘤生存率:78% | 无 | [ |
| 非小细胞肺癌 | NCT03158129 | Ⅱ期 | 纳武利尤单抗(23例)或纳武利尤单抗+伊匹木单抗(21例) | MPR率:24%比50%, pCR率:10%比38% | 13%比10% | [ |
| 非小细胞肺癌 | NCT02998528 | Ⅲ期 | 化疗(176例)或纳武利尤单抗+ 化疗(176例) | 中位无事件生存期:20.8个月比 31.6个月,pCR率:2.2%比24.0% | 36.9%比33.5% | [ |
| 非小细胞肺癌 | NCT02904954 | Ⅱ期 | 度伐利尤单抗(30例)或度伐利尤单抗+放疗(30例) | MPR率:6.7%比53.3% | 17%比20% | [ |
| 食管鳞状细胞癌 | ChiCTR2000037488 | Ⅱ期 | 替雷利珠单抗+化疗(45例) | MPR率:72%,pCR率:50% | 42.2% | [ |
| 胃及胃食管结合部腺癌 | NCT04065282 | Ⅱ期 | 信迪利单抗+化疗(36例) | MPR率:47.2%,pCR率:19.4%,1年无瘤 生存率:90.3%,1年生存率:94.1% | 13.9% | [ |
| 胃及胃食管结合部腺癌 | NCT03631615 | Ⅱ期 | 卡瑞利珠单抗+放疗+化疗 (36例) | MPR率:44.4%,pCR率:33.3%,2年无进展生存率:66.9%,2年生存率:76.1% | 77.8% | [ |
| 肝细胞癌 | NCT03916627 | Ⅱ期 | 西米普利单抗(21例) | 切除肿瘤中坏死面积>70%比例:20% | 10% | [ |
| 肝细胞癌 | NCT04297202 | Ⅱ期 | 卡瑞利珠单抗+阿帕替尼 (18例) | MPR率:17.6%,pCR率:5.9%, 1年无复发生存率:53.85% | 16.7% | [ |
| [1] | Topalian SL, Forde PM, Emens LA, et al. Neoadjuvant immune checkpoint blockade: a window of opportunity to advance cancer immunotherapy[J]. Cancer Cell, 2023, 41(9): 1551-1566. DOI: 10.1016/j.ccell.2023.07.011. |
| [2] | Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy[J]. Science, 2020, 367(6477): eaax0182. DOI: 10.1126/science.aax0182. |
| [3] | Rui R, Zhou L, He S. Cancer immunotherapies: advances and bottlenecks[J]. Front Immunol, 2023, 14: 1212476. DOI: 10.3389/fimmu.2023.1212476. |
| [4] |
Luoma AM, Suo S, Wang Y, et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy[J]. Cell, 2022, 185(16): 2918-2935.e29. DOI: 10.1016/j.cell.2022.06.018.
pmid: 35803260 |
| [5] | Caushi JX, Zhang J, Ji Z, et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers[J]. Nature, 2021, 596(7870): 126-132. DOI: 10.1038/s41586-021-03752-4. |
| [6] | Hui Z, Zhang J, Ren Y, et al. Single-cell profiling of immune cells after neoadjuvant pembrolizumab and chemotherapy in ⅢA non-small cell lung cancer (NSCLC)[J]. Cell Death Dis, 2022, 13(7): 607. DOI: 10.1038/s41419-022-05057-4. |
| [7] |
Bassez A, Vos H, Van Dyck L, et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer[J]. Nat Med, 2021, 27(5): 820-832. DOI: 10.1038/s41591-021-01323-8.
pmid: 33958794 |
| [8] | Lee AH, Sun L, Mochizuki AY, et al. Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma[J]. Nat Commun, 2021, 12(1): 6938. DOI: 10.1038/s41467-021-26940-2. |
| [9] | Wislez M, Mazieres J, Lavole A, et al. Neoadjuvant durvalumab for resectable non-small-cell lung cancer (NSCLC): results from a multicenter study (IFCT-1601 IONESCO)[J]. J Immunother Cancer, 2022, 10(10): e005636. DOI: 10.1136/jitc-2022-005636. |
| [10] |
Cascone T, William WN Jr, Weissferdt A, et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial[J]. Nat Med, 2021, 27(3): 504-514. DOI: 10.1038/s41591-020-01224-2.
pmid: 33603241 |
| [11] | Marron TU, Fiel MI, Hamon P, et al. Neoadjuvant cemiplimab for resectable hepatocellular carcinoma: a single-arm, open-label, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(3): 219-229. DOI: 10.1016/S2468-1253(21)00385-X. |
| [12] | 蔡刚祥, 李境, 许斌. 肺癌新辅助免疫治疗研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 366-370. DOI: 10.3760/cma.j.cn371439-20220323-00070. |
| [13] | Forde PM, Spicer J, Lu S, et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer[J]. N Engl J Med, 2022, 386(21): 1973-1985. DOI: 10.1056/NEJMoa2202170. |
| [14] | Shen D, Wang J, Wu J, et al. Neoadjuvant pembrolizumab with chemotherapy for the treatment of stage ⅡB -ⅢB resectable lung squamous cell carcinoma[J]. J Thorac Dis, 2021, 13(3): 1760-1768. DOI: 10.21037/jtd-21-103. |
| [15] |
Boch T, Frost N, Sommer L, et al. Pathologic responses in oligometastatic NSCLC patients treated with neoadjuvant immune checkpoint blockade with and without chemotherapy followed by surgery[J]. Lung Cancer, 2022, 164: 46-51. DOI: 10.1016/j.lungcan.2021.11.009.
pmid: 34998106 |
| [16] | Tfayli A, Al Assaad M, Fakhri G, et al. Neoadjuvant chemotherapy and avelumab in early stage resectable nonsmall cell lung cancer[J]. Cancer Med, 2020, 9(22): 8406-8411. DOI: 10.1002/cam4.3456. |
| [17] | Hu J, Chen J, Ou Z, et al. Neoadjuvant immunotherapy, chemotherapy, and combination therapy in muscle-invasive bladder cancer: a multi-center real-world retrospective study[J]. Cell Rep Med, 2022, 3(11): 100785. DOI: 10.1016/j.xcrm.2022.100785. |
| [18] | Yan X, Duan H, Ni Y, et al. Tislelizumab combined with chemotherapy as neoadjuvant therapy for surgically resectable esophageal cancer: a prospective, single-arm, phase Ⅱ study (TD-NICE)[J]. Int J Surg, 2022, 103: 106680. DOI: 10.1016/j.ijsu.2022.106680. |
| [19] | Jiang H, Yu X, Li N, et al. Efficacy and safety of neoadjuvant sintilimab, oxaliplatin and capecitabine in patients with locally advanced, resectable gastric or gastroesophageal junction adeno-carcinoma: early results of a phase 2 study[J]. J Immunother Cancer, 2022, 10(3): e003635. DOI: 10.1136/jitc-2021-003635. |
| [20] | Leidner R, Crittenden M, Young K, et al. Neoadjuvant immuno-radiotherapy results in high rate of complete pathological response and clinical to pathological downstaging in locally advanced head and neck squamous cell carcinoma[J]. J Immunother Cancer, 2021, 9(5): e002485. DOI: 10.1136/jitc-2021-002485. |
| [21] | Altorki NK, McGraw TE, Borczuk AC, et al. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial[J]. Lancet Oncol, 2021, 22(6): 824-835. DOI: 10.1016/S1470-2045(21)00149-2. |
| [22] | Wise-Draper TM, Gulati S, Palackdharry S, et al. Phase Ⅱ clinical trial of neoadjuvant and adjuvant pembrolizumab in resectable local-regionally advanced head and neck squamous cell carcinoma[J]. Clin Cancer Res, 2022, 28(7): 1345-1352. DOI: 10.1158/1078-0432.CCR-21-3351. |
| [23] | Tang Z, Wang Y, Liu D, et al. The Neo-PLANET phase Ⅱ trial of neoadjuvant camrelizumab plus concurrent chemoradiotherapy in locally advanced adenocarcinoma of stomach or gastroesophageal junction[J]. Nat Commun, 2022, 13(1): 6807. DOI: 10.1038/s41467-022-34403-5. |
| [24] |
Li Q, Wu P, Du Q, et al. cGAS-STING, an important signaling pathway in diseases and their therapy[J]. MedComm, 2024, 5(4): e511. DOI: 10.1002/mco2.511.
pmid: 38525112 |
| [25] | Xia Y, Tang W, Qian X, et al. Efficacy and safety of camrelizumab plus apatinib during the perioperative period in resectable hepatocellular carcinoma: a single-arm, open label, phase Ⅱ clinical trial[J]. J Immunother Cancer, 2022, 10(4): e004656. DOI: 10.1136/jitc-2022-004656. |
| [26] | Tian Y, Zhang L, Jin N, et al. Clinical response to neoadjuvant immunotherapy combined with targeted therapy and chemotherapy in oral squamous cell carcinoma: experience in three patients[J]. Onco Targets Ther, 2022, 15: 353-359. DOI: 10.2147/OTT.S355349. |
| [27] | 刘新志, 熊振, 肖斌毅, 等. 基于多中心真实世界数据的结直肠癌联合免疫治疗的新辅助治疗安全性及其疗效[J]. 中华胃肠外科杂志, 2022, 25(3): 219-227. DOI: 10.3760/cma.j.cn441530-20220228-00070. |
| [28] | Yang Y, Tan L, Hu J, et al. Safety and efficacy of neoadjuvant treatment with immune checkpoint inhibitors in esophageal cancer: real-world multicenter retrospective study in China[J]. Dis Esophagus, 2022, 35(11): doac031. DOI: 10.1093/dote/doac031. |
| [29] | Zhao D, Xu L, Wu J, et al. Comparison of perioperative outcomes among non-small cell lung cancer patients with neoadjuvant immune checkpoint inhibitor plus chemotherapy, EGFR-TKI, and chemo-therapy alone: a real-world evidence study[J]. Transl Lung Cancer Res, 2022, 11(7): 1468-1478. DOI: 10.21037/tlcr-22-476. |
| [30] | Chen F, Zhang H, Li Y, et al. Complete remission in a patient with sinonasal squamous cell carcinoma receiving neoadjuvant tislelizumab plus chemotherapy: a case report[J]. Front Immunol, 2024, 15: 1414529. DOI: 10.3389/fimmu.2024.1414529. |
| [31] | Chan M, Krishnan T, Townsend A, et al. The current landscape of neoadjuvant therapy for resectable colon cancer[J]. Expert Rev Anticancer Ther, 2025, 25(8): 901-913. DOI: 10.1080/14737140.2025.2517881. |
| [32] | 邓隽军, 赵大勇, 李淼. 免疫检查点抑制剂在非小细胞肺癌治疗中的不良反应及危险因素[J]. 国际肿瘤学杂志, 2023, 50(9): 564-568. DOI: 10.3760/cma.j.cn371439-20230404-00108. |
| [33] | Ramos-Casals M, Sisó-Almirall A. Immune-related adverse events of immune checkpoint inhibitors[J]. Ann Intern Med, 2024, 177(2): ITC17-ITC32. DOI: 10.7326/AITC202402200. |
| [34] |
Wang SJ, Dougan SK, Dougan M. Immune mechanisms of toxicity from checkpoint inhibitors[J]. Trends Cancer, 2023, 9(7): 543-553. DOI: 10.1016/j.trecan.2023.04.002.
pmid: 37117135 |
| [35] | Suijkerbuijk KPM, van Eijs MJM, van Wijk F, et al. Clinical and translational attributes of immune-related adverse events[J]. Nat Cancer, 2024, 5(4): 557-571. DOI: 10.1038/s43018-024-00730-3. |
| [36] | Adashek JJ, Moran JA, Le DT, et al. Lessons learned from a decade of immune checkpoint inhibition: the good, the bad, and the ugly[J]. Cancer Metastasis Rev, 2025, 44(2): 43. DOI: 10.1007/s10555-025-10260-8. |
| [37] | Li Y, Chen T, Nie TY, et al. Hyperprogressive disease in non-small cell lung cancer after PD-1/PD-L1 inhibitors immunotherapy: underlying killer[J]. Front Immunol, 2023, 14: 1200875. DOI: 10.3389/fimmu.2023.1200875. |
| [38] | Gomes da Morais AL, de Miguel M, Cardenas JM, et al. Comparison of radiological criteria for hyperprogressive disease in response to immunotherapy[J]. Cancer Treat Rev, 2020, 91: 102116. DOI: 10.1016/j.ctrv.2020.102116. |
| [39] |
Djunadi TA, Oh Y, Lee J, et al. Redefining clinical hyperprogression: the incidence, clinical implications, and risk factors of hyperprogression in non-small cell lung cancer treated with immunotherapy[J]. Clin Lung Cancer, 2024, 25(4): 365-375.e14. DOI: 10.1016/j.cllc.2024.03.001.
pmid: 38644088 |
| [40] | Kang YK, Reck M, Nghiem P, et al. Assessment of hyperprogression versus the natural course of disease development with nivolumab with or without ipilimumab versus placebo in phase Ⅲ, randomized, controlled trials[J]. J Immunother Cancer, 2022, 10(4): e004273. DOI: 10.1136/jitc-2021-004273. |
| [41] |
Frelaut M, du Rusquec P, de Moura A, et al. Pseudoprogression and hyperprogression as new forms of response to immunotherapy[J]. BioDrugs, 2020, 34(4): 463-476. DOI: 10.1007/s40259-020-00425-y.
pmid: 32394415 |
| [42] | Zhang C, Zhang C, Wang H. Immune-checkpoint inhibitor resistance in cancer treatment: current progress and future directions[J]. Cancer Lett, 2023, 562: 216182. DOI: 10.1016/j.canlet.2023.216182. |
| [43] | Yang M, Cui M, Sun Y, et al. Mechanisms, combination therapy, and biomarkers in cancer immunotherapy resistance[J]. Cell Commun Signal, 2024, 22(1): 338. DOI: 10.1186/s12964-024-01711-w. |
| [44] | Xiang Y, Liu X, Wang Y, et al. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges[J]. Front Immunol, 2024, 15: 1366260. DOI: 10.3389/fimmu.2024.1366260. |
| [45] | Liu X, Harbison RA, Varvares MA, et al. Immunotherapeutic strategies in head and neck cancer: challenges and opportunities[J]. J Clin Invest, 2025, 135(8): e188128. DOI: 10.1172/JCI188128. |
| [1] | Yang Xinting, Ma Tengyu, Guan Shulong, Yang Mei, Jiang Zhou, Yang Xinru, Jiang Liangqian, Gao Meihua, Xu Yingjie, Cong Beibei. Research on the mechanism of targeting CD59 to inhibit proliferation, migration, and induce apoptosis in oral squamous cell carcinoma [J]. Journal of International Oncology, 2026, 53(1): 16-23. |
| [2] | Lei Shengfei, Qiu Jun, Wang Jianli. Predictive value of CONUT score combined with serum TLR-4 and NF-κB for radiation-induced lung injury in patients with thoracic malignancies undergoing radiotherapy [J]. Journal of International Oncology, 2026, 53(1): 24-30. |
| [3] | Yu Yunpeng, Dai Chunhua, Ling Rui. Efficacy and safety of tislelizumab combined with chemotherapy in the treatment of advanced esophageal cancer [J]. Journal of International Oncology, 2026, 53(1): 31-37. |
| [4] | Liu Xinlei, Li Yaru, Chen Shuning, Tang Shenghao, Qin Yan, Liu Yankui, Qi Xiaowei. Research progress of HER2 ultra-low expression breast cancer [J]. Journal of International Oncology, 2026, 53(1): 53-56. |
| [5] | Li Ting, Zhou Qi, Zhang Qian, Chen Jie. Research progress on resistance mechanisms of anti-PD-1/PD-L1 therapy in advanced non-small cell lung cancer [J]. Journal of International Oncology, 2026, 53(1): 57-61. |
| [6] | Wang Yu, Li Yuanfei, Guo Yuntong. Research progress of the immunoscore system in gastric cancer [J]. Journal of International Oncology, 2026, 53(1): 62-64. |
| [7] | Wang Mengju, Wang Xia. Anti-tumor effect and immunomodulatory mechanism of atractylenolide Ⅱ on colon cancer mice [J]. Journal of International Oncology, 2025, 52(9): 545-553. |
| [8] | Li Peng, Zhang Shuang, Liu Huafeng, Ji Na, Hou Xiangkun, Xi Aohang, Zong Jianhai. Research on positioning errors analysis of gamma knife pain-free face mask fractionated treatment for head tumors based on kV orthogonal image guidance [J]. Journal of International Oncology, 2025, 52(9): 554-559. |
| [9] | Chen Qiaoliang, Qin Xinyan, Lai Ruihe, Tan Shuangxiu. Diagnostic value of multimodal Nomogram model combining 18F-FDG PET/CT and ultrasound for triple negative breast cancer [J]. Journal of International Oncology, 2025, 52(9): 560-565. |
| [10] | Wu Songyou, Wang Gang, Wang Wenling, Dong Hongmin, Chen Weiwei, Li Xiaokai, Chen Wanghua, Zuo Kai. Prospective cohort study on the effect of abdominal circumference on the intestinal radiation dose volume and the acute intestinal toxicity in pelvic intensity modulated radiation therapy for rectal cancer patients [J]. Journal of International Oncology, 2025, 52(9): 566-575. |
| [11] | Qiu Kexin, Li Mengzhen, Guo Haoran, Fan Mengsi, Yan Li. Prognostic analysis of different surgical approaches in elderly patients with advanced ovarian cancer [J]. Journal of International Oncology, 2025, 52(9): 576-582. |
| [12] | Liu Mei, Hu Yuchong, Li Fengtong, Chao Lemen, Liu Meng, Kang Linlin. Mechanism of action of SHCBP1 in malignant tumors and progress in clinical research [J]. Journal of International Oncology, 2025, 52(9): 583-586. |
| [13] | Cheng Honglei, Wang Ti, Lan Zhidong, Gong Heyi. Value of clinical indicators in predicting the efficacy of neoadjuvant therapy for esophageal cancer [J]. Journal of International Oncology, 2025, 52(9): 592-597. |
| [14] | Hai Yanan, Bao Wenfang, Shentu Hangxiao, Chen Jingde. Mechanism of immunotherapy resistance and the progress of post-resistance treatment for dMMR/MSI-H metastatic colorectal cancer [J]. Journal of International Oncology, 2025, 52(9): 598-602. |
| [15] | Radiation Oncology Professional Committee of the Chinese Research Hospital Association, Hebei Society of Mathematical and Physical Medicine, Tianjin Precision Medicine Society. Expert consensus on the clinical diagnosis and treatment of post-obstructive pneumonia in newly diagnosed lung cancer patients [J]. Journal of International Oncology, 2025, 52(8): 484-494. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
