
Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (12): 782-786.doi: 10.3760/cma.j.cn371439-20250605-00133
• Review • Previous Articles Next Articles
Received:2025-06-05
Revised:2025-07-14
Online:2025-12-08
Published:2025-12-31
Contact:
Li Baozhong
E-mail:libaozhong99@126.com
Supported by:Wang Jing, Li Baozhong. Regulatory mechanisms, clinical significance and targeted therapeutic strategies of the immune checkpoint VISTA in tumors[J]. Journal of International Oncology, 2025, 52(12): 782-786.
| [1] | 李谡瑶, 黄俊星. 肿瘤免疫治疗疗效预测标志物的研究进展[J]. 国际肿瘤学杂志, 2021, 48(4): 220-224. DOI: 10.3760/cma.j.cn371439-20200722-00044. |
| [2] |
Hu C, Xu Z, Chen S, et al. Overexpression of B7H5/CD28H is associated with worse survival in human gastric cancer[J]. J Cell Mol Med, 2020, 24(2): 1360-1369. DOI: 10.1111/jcmm.14812.
pmid: 31883303 |
| [3] | Niu X, Li B, Luo F, et al. VISTA as a context-dependent immune checkpoint: implications for tumor immunity and autoimmune pathogenesis[J]. Biochim Biophys Acta Rev Cancer, 2025, 1880(3): 189351. DOI: 10.1016/j.bbcan.2025.189351. |
| [4] | 汤子君, 郑涵雪, 熊皓, 等. 免疫检查点分子VISTA在血液系统肿瘤中的研究进展[J]. 解放军医学杂志, 2025, 50(6): 672-678. DOI: 10.11855/j.issn.0577-7402.1065.2025.0123. |
| [5] |
Yuan L, Tatineni J, Mahoney KM, et al. VISTA: a mediator of quiescence and a promising target in cancer immunotherapy[J]. Trends Immunol, 2021, 42(3): 209-227. DOI: 10.1016/j.it.2020.12.008.
pmid: 33495077 |
| [6] | Gao Y, He Y, Tang Y, et al. VISTA: a novel checkpoint for cancer immunotherapy[J]. Drug Discov Today, 2024, 29(7): 104045. DOI: 10.1016/j.drudis.2024.104045. |
| [7] | Nishizaki D, Kurzrock R, Miyashita H, et al. Viewing the immune checkpoint VISTA: landscape and outcomes across cancers[J]. ESMO Open, 2024, 9(4): 102942. DOI: 10.1016/j.esmoop.2024.102942. |
| [8] | 金梦茹, 王莉, 李燕京. 乳酸对肿瘤微环境内免疫细胞的影响及相关靶点治疗的研究进展[J]. 肿瘤防治研究, 2023, 50(6): 634-640. DOI: 10.3971/j.issn.1000-8578.2023.22.1076. |
| [9] | Tao J, Yang G, Zhou W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer[J]. J Hematol Oncol, 2021, 14(1): 14. DOI: 10.1186/s13045-020-01030-w. |
| [10] |
Chen X, Zeh HJ, Kang R, et al. Cell death in pancreatic cancer: from pathogenesis to therapy[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(11): 804-823. DOI: 10.1038/s41575-021-00486-6.
pmid: 34331036 |
| [11] |
Kshitiz, Afzal J, Suhail Y, et al. Lactate-dependent chaperone-mediated autophagy induces oscillatory HIF-1α activity promoting proliferation of hypoxic cells[J]. Cell Syst, 2022, 13(12): 1048-1064.e7. DOI: 10.1016/j.cels.2022.11.003.
pmid: 36462504 |
| [12] | 陈佩瑶, 贾军梅. 缺氧影响免疫治疗耐药的机制与应用[J]. 国际肿瘤学杂志, 2021, 48(8): 489-493. DOI: 10.3760/cma.j.cn371439-20201105-00093. |
| [13] |
Deng J, Li J, Sarde A, et al. Hypoxia-induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the tumor microenvironment[J]. Cancer Immunol Res, 2019, 7(7): 1079-1090. DOI: 10.1158/2326-6066.CIR-18-0507.
pmid: 31088847 |
| [14] |
Mahoney KM, Freeman GJ. Acidity changes immunology: a new VISTA pathway[J]. Nat Immunol, 2020, 21(1): 13-16. DOI: 10.1038/s41590-019-0563-2.
pmid: 31822869 |
| [15] | Johnston RJ, Su LJ, Pinckney J, et al. VISTA is an acidic pH-selective ligand for PSGL-1[J]. Nature, 2019, 574(7779): 565-570. DOI: 10.1038/s41586-019-1674-5. |
| [16] |
Ngwa VM, Hwang Y, Song W, et al. Targeting mTORC2 in lung squamous cell carcinoma improves anti-tumor immunity through the PSGL-1-VISTA axis[J]. Cancer Gene Ther, 2025, 32(8): 899-910. DOI: 10.1038/s41417-025-00934-4.
pmid: 40640525 |
| [17] | Thakkar D, Paliwal S, Dharmadhikari B, et al. Correction: rationally targeted anti-VISTA antibody that blockades the C-C' loop region can reverse VISTA immune suppression and remodel the immune microenvironment to potently inhibit tumor growth in an Fc independent manner[J]. J Immunother Cancer, 2022, 10(2): e003382corr1. DOI: 10.1136/jitc-2021-003382corr1. |
| [18] | Ta HM, Roy D, Zhang K, et al. LRIG1 engages ligand VISTA and impairs tumor-specific CD8+ T cell responses[J]. Sci Immunol, 2024, 9(95): eadi7418. DOI: 10.1126/sciimmunol.adi7418. |
| [19] | Ma J, Tang L, Tan Y, et al. Lithium carbonate revitalizes tumor-reactive CD8+ T cells by shunting lactic acid into mitochondria[J]. Nat Immunol, 2024, 25(3): 552-561. DOI: 10.1038/s41590-023-01738-0. |
| [20] |
Qian Y, Galan-Cobo A, Guijarro I, et al. MCT4-dependent lactate secretion suppresses antitumor immunity in LKB1-deficient lung adenocarcinoma[J]. Cancer Cell, 2023, 41(7): 1363-1380. DOI: 10.1016/j.ccell.2023.05.015.
pmid: 37327788 |
| [21] | Xu Y, Hao X, Ren Y, et al. Research progress of abnormal lactate metabolism and lactate modification in immunotherapy of hepatocellular carcinoma[J]. Front Oncol, 2022, 12: 1063423. DOI: 10.3389/fonc.2022.1063423. |
| [22] |
Chen D, Liu P, Lu X, et al. Pan-cancer analysis implicates novel insights of lactate metabolism into immunotherapy response prediction and survival prognostication[J]. J Exp Clin Cancer Res, 2024, 43(1): 125. DOI: 10.1186/s13046-024-03042-7.
pmid: 38664705 |
| [23] | Zhou J, Tison K, Zhou H, et al. STAT5 and STAT3 balance shapes dendritic cell function and tumour immunity[J]. Nature, 2025, 643(8071): 519-528. DOI: 10.1038/s41586-025-09000-3. |
| [24] |
He J, Chai X, Zhang Q, et al. Author correction: the lactate receptor HCAR1 drives the recruitment of immunosuppressive PMN-MDSCs in colorectal cancer[J]. Nat Immunol, 2025, 26(4): 635-635. DOI: 10.1038/s41590-025-02121-x.
pmid: 40065162 |
| [25] | Nishinakamura H, Shinya S, Irie T, et al. Coactivation of innate immune suppressive cells induces acquired resistance against combined TLR agonism and PD-1 blockade[J]. Sci Transl Med, 2025, 17(785): eadk3160. DOI: 10.1126/scitranslmed.adk3160. |
| [26] | 纪淳望, 李松, 刘联. 腹膜转移癌的发病机制与免疫治疗临床研究进展[J]. 国际肿瘤学杂志, 2025, 52(5): 325-330. DOI: 10.3760/cma.j.cn371439-20250106-00055. |
| [27] | Yasinska IM, Meyer NH, Schlichtner S, et al. Ligand-receptor interactions of galectin-9 and VISTA suppress human T lymphocyte cytotoxic activity[J]. Front Immunol, 2020, 11: 580557. DOI: 10.3389/fimmu.2020.580557. |
| [28] | 陶莹, 廖长秀. 新兴免疫阻断分子在肝细胞癌发生发展中的作用[J]. 临床肝胆病杂志, 2023, 39(4): 948-955. DOI: 10.3969/j.issn.1001-5256.2023.04.031. |
| [29] | 檀晓丹. 抑制VISTA/VSIG3通路对T细胞杀伤肝癌细胞的体内外研究[D]. 福州: 福建医科大学, 2023. DOI: 10.27020/d.cnki.gfjyu.2023.000200. |
| [30] | Ma S, Qin L, Wang X, et al. The expression of VISTA on CD4+ T cells associate with poor prognosis and immune status in non-small cell lung cancer patients[J]. Bosn J Basic Med Sci, 2022, 22(5): 707-715. DOI: 10.17305/bjbms.2021.6531. |
| [31] | Desai SS, Salahuddin S, Yusuf R, et al. The tumor microenvironment of non-small cell lung cancer impairs immune cell function in people with HIV[J]. J Clin Invest, 2025, 135(14): e177310. DOI: 10.1172/JCI177310. |
| [32] | Song J, Mou P, Song GG, et al. Advances in immunotherapy for uveal melanoma: enhancing efficacy and overcoming resistance[J]. Front Cell Dev Biol, 2025, 13: 1619150. DOI: 10.3389/fcell.2025.1619150. |
| [33] | Issam Salah NEI, Marnissi F, Lakhdar A, et al. The immune checkpoint VISTA is associated with prognosis in patients with malignant uveal melanoma[J]. Front Immunol, 2023, 14: 1225140. DOI: 10.3389/fimmu.2023.1225140. |
| [34] | Lamas NJ, Lassalle S, Martel A, et al. Characterisation of the protein expression of the emerging immunotherapy targets VISTA, LAG-3 and PRAME in primary uveal melanoma: insights from a southern French patient cohort[J]. Pathology, 2023, 55(7): 929-944. DOI: 10.1016/j.pathol.2023.08.003. |
| [35] |
Li L, Xu XT, Wang LL, et al. Expression and clinicopathological significance of Foxp3 and VISTA in cervical cancer[J]. Am J Transl Res, 2021, 13(9): 10428-10438.
pmid: 34650712 |
| [36] | 张润兵, 高春, 伍杨, 等. 新型免疫检查点在胃癌发生、进展和免疫治疗中的研究进展[J]. 胃肠病学, 2023, 28(10): 626-631. DOI: 10.3969/j.issn.1008-7125.2023.10.009. |
| [37] |
Wang R, Song S, Harada K, et al. Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response[J]. Gut, 2020, 69(1): 18-31. DOI: 10.1136/gutjnl-2018-318070.
pmid: 31171626 |
| [38] | 翟博雅, 杨野梵, 龚予希, 等. 三阴性乳腺癌中VISTA、PD-L1表达与临床病理特征及预后的相关性[J]. 中华病理学杂志, 2022, 51(9): 832-837. DOI: 10.3760/cma.j.cn112151-20220429-00345. |
| [39] | 赵杰, 陶璐, 刘姗姗. 乳腺癌患者不同病理特征中H3K9ac、PD-L1、VISTA表达及其联合检测对乳腺癌不良预后的预测价值[J]. 河南医学研究, 2024, 33(18): 3357-3361. DOI: 10.3969/j.issn.1004-437X.2024.18.024. |
| [40] | 毛武, 史浩, 王子祥, 等. 免疫检查点蛋白VISTA在乳腺癌中的表达及对预后的影响[J]. 现代医药卫生, 2023, 39(5): 764-770. DOI: 10.3969/j.issn.1009-5519.2023.05.010. |
| [41] | 周思琦, 赵典, 张舒, 等. VISTA表达与胰腺癌患者预后的相关性[J]. 徐州医科大学学报, 2020, 40(3): 157-162. DOI: 10.3969/j.issn.2096-3882.2020.03.001. |
| [42] | 史慧, 龙珑, 杨雨寒, 等. 结直肠癌组织免疫细胞中VISTA和PD-L1表达及其与预后关联[J]. 中华肿瘤防治杂志, 2021, 28(21): 1635-1641, 1647. DOI: 10.16073/j.cnki.cjcpt.2021.21.07. |
| [43] | Kim TK, Han X, Hu Q, et al. PD-1H/VISTA mediates immune evasion in acute myeloid leukemia[J]. J Clin Invest, 2024, 134(3): e164325. DOI: 10.1172/JCI164325. |
| [44] | 葛梦君, 徐开林, 许婷, 等. PD-1、TIM-3、VISTA在急性髓系白血病患者T细胞上的表达及意义[J]. 中国实验血液学杂志, 2020, 28(3): 748-752. DOI:10.19746/j.cnki.issn1009-2137.2020.03.006. |
| [45] | Mohamed NK, El-Mokhtar MA, Zahran AM, et al. VISTA is a potential target for immunotherapy in B-cell acute lymphoblastic leukemia in children[J]. Sci Rep, 2025, 15(1): 23809. DOI: 10.1038/s41598-025-08164-2. |
| [46] | Mo J, Deng L, Peng K, et al. Targeting STAT3-VISTA axis to suppress tumor aggression and burden in acute myeloid leukemia[J]. J Hematol Oncol, 2023, 16(1): 15. DOI: 10.1186/s13045-023-01410-y. |
| [47] | He HX, Gao Y, Fu JC, et al. VISTA and PD-L1 synergistically predict poor prognosis in patients with extranodal natural killer/T-cell lymphoma[J]. Oncoimmunology, 2021, 10(1): 1907059. DOI: 10.1080/2162402X.2021.1907059. |
| [48] |
Murga-Zamalloa CA, Brown NA, Wilcox RA. Expression of the checkpoint receptors LAG-3, TIM-3 and VISTA in peripheral T cell lymphomas[J]. J Clin Pathol, 2020, 73(4): 197-203. DOI: 10. 1136/jclinpath-2019-206117.
pmid: 31672704 |
| [49] | Iadonato S, Ovechkina Y, Lustig K, et al. A highly potent anti-VISTA antibody KVA12123—a new immune checkpoint inhibitor and a promising therapy against poorly immunogenic tumors[J]. Front Immunol, 2024, 14: 1311658. DOI: 10.3389/fimmu.2023.1311658. |
| [50] | Kineta, Inc. Kineta provides update on its ongoing phase 1/2 VISTA-101clinical trial of KVA12123 in patients with advanced solid tumors[EB/OL]. [2024-01-17] [2025-08-09]. https://www.globenewswire.com/news-release/2024/01/17/2810707/0/en/Kineta-Provides-Update-on-its-Ongoing-Phase-1-2-VISTA-101-Clinical-Trial-of-KVA12123-in-Patients-with-Advanced-Solid-Tumors.html. |
| [51] | Burvenich IJG, Wichmann CW, McDonald AF, et al. Targeting of immune checkpoint regulator V-domain Ig suppressor of T-cell activation (VISTA) with 89Zr-labelled CI-8993[J]. Eur J Nucl Med Mol Imaging, 2024, 51(13): 3863-3873. DOI: 10.1007/s00259-024-06854-z. |
| [52] | Anon. First-in-human study of the anti-VISTA antibody CI-8993 in patients with advanced solid tumors[C]// Poster presented at: American Association for Cancer Research Annual Meeting. Orlando, FL. 2023: CT178. |
| [53] |
Sasikumar PG, Sudarshan NS, Adurthi S, et al. PD-1 derived CA-170 is an oral immune checkpoint inhibitor that exhibits preclinical anti-tumor efficacy[J]. Commun Biol, 2021, 4(1): 699. DOI: 10.1038/s42003-021-02191-1.
pmid: 34103659 |
| [54] | 王欣, 林明星, 陈全文, 等. VISTA和PD-1信号通路联合阻断在小鼠结肠癌放射治疗中的作用机制[J]. 福建医药杂志, 2022, 44(1): 120-123. DOI: 10.3969/j.issn.1002-2600.2022.01.043. |
| [55] |
Trigo J, Subbiah V, Besse B, et al. Lurbinectedin as second-line treatment for patients with small-cell lung cancer: a single-arm, open-label, phase 2 basket trial[J]. Lancet Oncol, 2020, 21(5): 645-654. DOI: 10.1016/S1470-2045(20)30068-1.
pmid: 32224306 |
| [56] | 黄梅, 李燕京, 孟庆威. 非小细胞肺癌脑转移免疫检查点抑制剂治疗的研究进展[J]. 肿瘤研究与临床, 2022, 34(5): 390-393. DOI: 10.3760/cma.j.cn115355-20210205-00076. |
| [57] | Peters S, Cho BC, Luft AV, et al. Durvalumab with or without tremelimumab in combination with chemotherapy in first-line metastatic NSCLC: five-year overall survival outcomes from the phase 3 poseidon trial[J]. J Thorac Oncol, 2025, 20(1): 76-93. DOI: 10.1016/j.jtho.2024.09.1381. |
| [58] | Cheng B, Lv J, Xiao Y, et al. Small molecule inhibitors targeting PD-L1, CTLA4, VISTA, TIM-3, and LAG3 for cancer immunotherapy (2020-2024)[J]. Eur J Med Chem, 2025, 283: 117141. DOI: 10.1016/j.ejmech.2024.117141. |
| [1] | Wang Mengju, Wang Xia. Anti-tumor effect and immunomodulatory mechanism of atractylenolide Ⅱ on colon cancer mice [J]. Journal of International Oncology, 2025, 52(9): 545-553. |
| [2] | Li Peng, Zhang Shuang, Liu Huafeng, Ji Na, Hou Xiangkun, Xi Aohang, Zong Jianhai. Research on positioning errors analysis of gamma knife pain-free face mask fractionated treatment for head tumors based on kV orthogonal image guidance [J]. Journal of International Oncology, 2025, 52(9): 554-559. |
| [3] | Chen Qiaoliang, Qin Xinyan, Lai Ruihe, Tan Shuangxiu. Diagnostic value of multimodal Nomogram model combining 18F-FDG PET/CT and ultrasound for triple negative breast cancer [J]. Journal of International Oncology, 2025, 52(9): 560-565. |
| [4] | Wu Songyou, Wang Gang, Wang Wenling, Dong Hongmin, Chen Weiwei, Li Xiaokai, Chen Wanghua, Zuo Kai. Prospective cohort study on the effect of abdominal circumference on the intestinal radiation dose volume and the acute intestinal toxicity in pelvic intensity modulated radiation therapy for rectal cancer patients [J]. Journal of International Oncology, 2025, 52(9): 566-575. |
| [5] | Qiu Kexin, Li Mengzhen, Guo Haoran, Fan Mengsi, Yan Li. Prognostic analysis of different surgical approaches in elderly patients with advanced ovarian cancer [J]. Journal of International Oncology, 2025, 52(9): 576-582. |
| [6] | Liu Mei, Hu Yuchong, Li Fengtong, Chao Lemen, Liu Meng, Kang Linlin. Mechanism of action of SHCBP1 in malignant tumors and progress in clinical research [J]. Journal of International Oncology, 2025, 52(9): 583-586. |
| [7] | Che Gen, Wu Rihan, Zhu Tiantian, Dong Li. Mechanism of the cGAS-STING signaling pathway in non-small cell lung cancer and its targeted therapeutic strategies [J]. Journal of International Oncology, 2025, 52(9): 587-591. |
| [8] | Cheng Honglei, Wang Ti, Lan Zhidong, Gong Heyi. Value of clinical indicators in predicting the efficacy of neoadjuvant therapy for esophageal cancer [J]. Journal of International Oncology, 2025, 52(9): 592-597. |
| [9] | Hai Yanan, Bao Wenfang, Shentu Hangxiao, Chen Jingde. Mechanism of immunotherapy resistance and the progress of post-resistance treatment for dMMR/MSI-H metastatic colorectal cancer [J]. Journal of International Oncology, 2025, 52(9): 598-602. |
| [10] | Radiation Oncology Professional Committee of the Chinese Research Hospital Association, Hebei Society of Mathematical and Physical Medicine, Tianjin Precision Medicine Society. Expert consensus on the clinical diagnosis and treatment of post-obstructive pneumonia in newly diagnosed lung cancer patients [J]. Journal of International Oncology, 2025, 52(8): 484-494. |
| [11] | Li Guangxin, Quan Huijuan, Gao Zhijuan, Wang Xiaojun, Li Liang, Dong Qian, Miao Yongtao, Liu Dongsheng. Correlation between serum levels of HAMP, SPP1, RGS2 and clinical pathological characteristics of gastric cancer patients and their predictive value for postoperative recurrence or metastasis [J]. Journal of International Oncology, 2025, 52(8): 502-507. |
| [12] | Chen Jun, Tang Dandan, Zhou Yuxin, Tan Yuting, Li Honglan, Xu Qun, Xiang Yongbing. Time trend analysis of the disease burden of colorectal cancer among young and middle-aged adults in China from 1990 to 2021 [J]. Journal of International Oncology, 2025, 52(8): 508-516. |
| [13] | Huang Jinfa, Zheng Lianqiu, Wu Jinpiao, Liu Deting, Chen Huiling. Prediction model for post-TACE infection risk in elderly patients with liver cancer [J]. Journal of International Oncology, 2025, 52(8): 517-522. |
| [14] | Wu Xuehui, Li Song, Liu Lian. Clinical applications of TCR sequencing in cancer immunotherapy [J]. Journal of International Oncology, 2025, 52(8): 523-527. |
| [15] | Zhang Baihong, Yue Hongyun. Novel therapeutic strategies: targeting cancer metastasis [J]. Journal of International Oncology, 2025, 52(8): 528-531. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
