Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (6): 377-381.doi: 10.3760/cma.j.cn371439-20221203-00075
• Reviews • Previous Articles Next Articles
Zhang Li1, Xiang Zhuo2, Wang Qiang2, Bi Jingwang2()
Received:
2022-12-03
Revised:
2022-12-29
Online:
2023-06-08
Published:
2023-07-11
Contact:
Bi Jingwang,Email:Zhang Li, Xiang Zhuo, Wang Qiang, Bi Jingwang. Research progress of cytokine release syndrome related to CAR-T immunotherapy[J]. Journal of International Oncology, 2023, 50(6): 377-381.
[1] |
Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells[J]. Biol Blood Marrow Transplant, 2019, 25(4): 625-638. DOI: 10.1016/j.bbmt.2018.12.758.
doi: 10.1016/j.bbmt.2018.12.758 |
[2] |
Yan Z, Zhang H, Cao J, et al. Characteristics and risk factors of cytokine release syndrome in chimeric antigen receptor T cell treatment[J]. Front Immunol, 2021, 12: 611366. DOI: 10.3389/fimmu.2021.611366.
doi: 10.3389/fimmu.2021.611366 |
[3] |
Lei W, Xie M, Jiang Q, et al. Treatment-related adverse events of chimeric antigen receptor T-cell (CAR T) in clinical trials: a systematic review and meta-analysis[J]. Cancers (Basel), 2021, 13(15): 3912. DOI: 10.3390/cancers13153912.
doi: 10.3390/cancers13153912 |
[4] |
Chen X, Li P, Tian B, et al. Serious adverse events and coping strategies of CAR-T cells in the treatment of malignant tumors[J]. Front Immunol, 2022, 13: 1079181. DOI: 10.3389/fimmu.2022.1079181.
doi: 10.3389/fimmu.2022.1079181 |
[5] |
Hao Z, Li R, Meng L, et al. Macrophage, the potential key mediator in CAR-T related CRS[J]. Exp Hematol Oncol, 2020, 9: 15. DOI: 10.1186/s40164-020-00171-5.
doi: 10.1186/s40164-020-00171-5 pmid: 32665874 |
[6] |
Guo H, Qian L, Cui J. Focused evaluation of the roles of macrophages in chimeric antigen receptor (CAR) T cell therapy associated cytokine release syndrome[J]. Cancer Biol Med, 2021, 19(3): 333-342. DOI: 10.20892/j.issn.2095-3941.2021.0087.
doi: 10.20892/j.issn.2095-3941.2021.0087 |
[7] |
Yang W, Bai X, Luan X, et al. Delicate regulation of IL-1β-mediated inflammation by cyclophilin A[J]. Cell Rep, 2022, 38(11): 110513. DOI: 10.1016/j.celrep.2022.110513.
doi: 10.1016/j.celrep.2022.110513 |
[8] |
Mantovani A, Dinarello CA, Molgora M, et al. Interleukin-1 and related cytokines in the regulation of inflammation and immunity[J]. Immunity, 2019, 50(4): 778-795. DOI: 10.1016/j.immuni.2019.03.012.
doi: S1074-7613(19)30129-3 pmid: 30995499 |
[9] |
Wang N, Hu X, Cao W, et al. Efficacy and safety of CAR19/22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies[J]. Blood, 2020, 135(1): 17-27. DOI: 10.1182/blood.2019000017.
doi: 10.1182/blood.2019000017 pmid: 31697824 |
[10] |
Sterner RM, Sakemura R, Cox MJ, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts[J]. Blood, 2019, 133(7): 697-709. DOI: 10.1182/blood-2018-10-881722.
doi: 10.1182/blood-2018-10-881722 pmid: 30463995 |
[11] |
Ingelfinger F, De Feo D, Becher B. GM-CSF: master regulator of the T cell-phagocyte interface during inflammation[J]. Semin Immunol, 2021, 54: 101518. DOI: 10.1016/j.smim.2021.101518.
doi: 10.1016/j.smim.2021.101518 |
[12] |
Sachdeva M, Duchateau P, Depil S, et al. Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators[J]. J Biol Chem, 2019, 294(14): 5430-5437. DOI: 10.1074/jbc.AC119.007558.
doi: 10.1074/jbc.AC119.007558 pmid: 30804212 |
[13] |
Flynn CM, Garbers Y, Lokau J, et al. Activation of Toll-like receptor 2 (TLR2) induces interleukin-6 trans-signaling[J]. Sci Rep, 2019, 9(1): 7306. DOI: 10.1038/s41598-019-43617-5.
doi: 10.1038/s41598-019-43617-5 pmid: 31086276 |
[14] |
RIddell SR. Adrenaline fuels a cytokine storm during immunotherapy[J]. Nature, 2018, 564(7735): 194-196. DOI: 10.1038/d41586-018-07581-w.
doi: 10.1038/d41586-018-07581-w |
[15] |
Xiao X, Huang S, Chen S, et al. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies[J]. J Exp Clin Cancer Res, 2021, 40(1): 367. DOI: 10.1186/s13046-021-02148-6.
doi: 10.1186/s13046-021-02148-6 |
[16] |
Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation[J]. Nat Rev Immunol, 2020, 20(3): 143-157. DOI: 10.1038/s41577-019-0228-2.
doi: 10.1038/s41577-019-0228-2 pmid: 31690840 |
[17] |
Liu Y, Fang Y, Chen X, et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome[J]. Sci Immunol, 2020, 5(43): eaax7969. DOI: 10.1126/sciimmunol.aax7969.
doi: 10.1126/sciimmunol.aax7969 |
[18] |
Wang C, Yang T, Xiao J, et al. NLRP3 inflammasome activation triggers gasdermin D-independent inflammation[J]. Sci Immunol, 2021, 6(64): eabj3859. DOI: 10.1126/sciimmunol.abj3859.
doi: 10.1126/sciimmunol.abj3859 |
[19] |
Huang Y, Li D, Zhang PF, et al. IL-18R-dependent and independent pathways account for IL-18-enhanced antitumor ability of CAR-T cells[J]. FASEB J, 2020, 34(1): 1768-1782. DOI: 10.1096/fj.201901809R.
doi: 10.1096/fj.201901809R pmid: 31914650 |
[20] |
Fajgenbaum DC, June CH. Cytokine storm[J]. N Engl J Med, 2020, 383(23): 2255-2273. DOI: 10.1056/NEJMra2026131.
doi: 10.1056/NEJMra2026131 |
[21] |
Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells[J]. Nat Med, 2018, 24(6): 739-748. DOI: 10.1038/s41591-018-0036-4.
doi: 10.1038/s41591-018-0036-4 pmid: 29808007 |
[22] |
Hirano T, Murakami M. COVID-19: a new virus, but a familiar receptor and cytokine release syndrome[J]. Immunity, 2020, 52(5): 731-733. DOI: 10.1016/j.immuni.2020.04.003.
doi: S1074-7613(20)30161-8 pmid: 32325025 |
[23] |
Wang J, Doran J. The many faces of cytokine release syndrome-related coagulopathy[J]. Clin Hematol Int, 2021, 3(1): 3-12. DOI: 10.2991/chi.k.210117.001.
doi: 10.2991/chi.k.210117.001 |
[24] |
D'Alessandro E, Scaf B, Munts C, et al. Coagulation factor Xa induces proinflammatory responses in cardiac fibroblasts via activation of protease-activated receptor-1[J]. Cells, 2021, 10(11): 2958. DOI: 10.3390/cells10112958.
doi: 10.3390/cells10112958 |
[25] |
Shao M, Yu Q, Teng X, et al. CRS-related coagulopathy in BCMA targeted CAR-T therapy: a retrospective analysis in a phase Ⅰ/Ⅱ clinical trial[J]. Bone Marrow Transplant, 2021, 56(7): 1642-1650. DOI: 10.1038/s41409-021-01226-9.
doi: 10.1038/s41409-021-01226-9 |
[26] |
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages[J]. Nat Rev Immunol, 2020, 20(6): 355-362. DOI: 10.1038/s41577-020-0331-4.
doi: 10.1038/s41577-020-0331-4 pmid: 32376901 |
[27] |
Kang S, Tanaka T, Inoue H, et al. IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome[J]. Proc Natl Acad Sci U S A, 2020, 117(36): 22351-22356. DOI: 10.1073/pnas.2010229117.
doi: 10.1073/pnas.2010229117 |
[28] |
Le RQ, Li L, Yuan W, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome[J]. Oncologist, 2018, 23(8): 943-947. DOI: 10.1634/theoncologist.2018-0028.
doi: 10.1634/theoncologist.2018-0028 pmid: 29622697 |
[29] |
Santomasso BD, Nastoupil LJ, Adkins S, et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline[J]. J Clin Oncol, 2021, 39(35): 3978-3992. DOI: 10.1200/JCO.21.01992.
doi: 10.1200/JCO.21.01992 |
[30] |
Hayden PJ, Roddie C, Bader P, et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA)[J]. Ann Oncol, 2022, 33(3): 259-275. DOI: 10.1016/j.annonc.2021.12.003.
doi: 10.1016/j.annonc.2021.12.003 |
[31] |
Caimi PF, Pacheco Sanchez G, Sharma A, et al. Prophylactic tocilizumab prior to anti-CD19 CAR-T cell therapy for non-Hodgkin lymphoma[J]. Front Immunol, 2021, 12: 745320. DOI: 10.3389/fimmu.2021.745320.
doi: 10.3389/fimmu.2021.745320 |
[32] |
Myers RM, Kadauke S, Li Y, et al. Risk-adapted preemptive tocilizumab decreases severe cytokine release syndrome (CRS) after CTL019 CD19-targeted chimeric antigen receptor (CAR) T-cell therapy for pediatric B-cell acute lymphoblastic leukemia (B-ALL)[J]. Biol Blood Marrow Transplant, 2020, 26(3): S39. DOI: 10.1016/j.bbmt.2019.12.105.
doi: 10.1016/j.bbmt.2019.12.105 |
[33] |
Oluwole OO, Bouabdallah K, Muñoz J, et al. Prophylactic corticosteroid use in patients receiving axicabtagene ciloleucel for large B-cell lymphoma[J]. Br J Haematol, 2021, 194(4): 690-700. DOI: 10.1111/bjh.17527.
doi: 10.1111/bjh.17527 |
[34] |
Wang X, Qi Y, Li H, et al. Impact of glucocorticoids on short-term and long-term outcomes in patients with relapsed/refractory multiple myeloma treated with CAR-T therapy[J]. Front Immunol, 2022, 13: 943004. DOI: 10.3389/fimmu.2022.943004.
doi: 10.3389/fimmu.2022.943004 |
[35] |
Karschnia P, Jordan JT, Forst DA, et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells[J]. Blood, 2019, 133(20): 2212-2221. DOI: 10.1182/blood-2018-12-893396.
doi: 10.1182/blood-2018-12-893396 pmid: 30808634 |
[36] |
Wehrli M, Gallagher K, Chen YB, et al. Single-center experience using anakinra for steroid-refractory immune effector cell-associated neurotoxicity syndrome (ICANS)[J]. J Immunother Cancer, 2022, 10(1): e003847. DOI: 10.1136/jitc-2021-003847.
doi: 10.1136/jitc-2021-003847 |
[37] |
Vastert SJ, Jamilloux Y, Quartier P, et al. Anakinra in children and adults with Still's disease[J]. Rheumatology (Oxford), 2019, 58(Suppl 6): vi9-vi22. DOI: 10.1093/rheumatology/kez350.
doi: 10.1093/rheumatology/kez350 |
[38] |
Temesgen Z, Assi M, Shweta FNU, et al. GM-CSF neutralization with lenzilumab in severe COVID-19 pneumonia: a case-cohort study[J]. Mayo Clin Proc, 2020, 95(11): 2382-2394. DOI: 10.1016/j.mayocp.2020.08.038.
doi: 10.1016/j.mayocp.2020.08.038 pmid: 33153629 |
[39] |
Huarte E, O'Connor RS, Peel MT, et al. Itacitinib (INCB039110), a JAK1 inhibitor, reduces cytokines associated with cytokine release syndrome induced by CAR T-cell therapy[J]. Clin Cancer Res, 2020, 26(23): 6299-6309. DOI: 10.1158/1078-0432.CCR-20-1739.
doi: 10.1158/1078-0432.CCR-20-1739 pmid: 32998963 |
[40] |
Mestermann K, Giavridis T, Weber J, et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells[J]. Sci Transl Med, 2019, 11(499): eaau5907. DOI: 10.1126/scitranslmed.aau5907.
doi: 10.1126/scitranslmed.aau5907 |
[41] |
Myers RM, Li Y, Barz Leahy A, et al. Humanized CD19-targeted chimeric antigen receptor (CAR) T cells in CAR-naive and CAR-exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia[J]. J Clin Oncol, 2021, 39(27): 3044-3055. DOI: 10.1200/JCO.20.03458.
doi: 10.1200/JCO.20.03458 |
[42] |
Davey AS, Call ME, Call MJ. The influence of chimeric antigen receptor structural domains on clinical outcomes and associated toxicities[J]. Cancers (Basel), 2020, 13(1): 38. DOI: 10.3390/cancers13010038.
doi: 10.3390/cancers13010038 |
[43] |
Alabanza L, Pegues M, Geldres C, et al. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains[J]. Mol Ther, 2017, 25(11): 2452-2465. DOI: 10.1016/j.ymthe.2017.07.013.
doi: S1525-0016(17)30354-4 pmid: 28807568 |
[44] |
Ying Z, Huang XF, Xiang X, et al. A safe and potent anti-CD19 CAR T cell therapy[J]. Nat Med, 2019, 25(6): 947-953. DOI: 10.1038/s41591-019-0421-7.
doi: 10.1038/s41591-019-0421-7 pmid: 31011207 |
[45] |
Tan AHJ, Vinanica N, Campana D. Chimeric antigen receptor-T cells with cytokine neutralizing capacity[J]. Blood Adv, 2020, 4(7): 1419-1431. DOI: 10.1182/bloodadvances.2019001287.
doi: 10.1182/bloodadvances.2019001287 pmid: 32271901 |
[46] |
Feucht J, Sun J, Eyquem J, et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency[J]. Nat Med, 2019, 25(1): 82-88. DOI: 10.1038/s41591-018-0290-5.
doi: 10.1038/s41591-018-0290-5 pmid: 30559421 |
[47] |
Kang L, Tang X, Zhang J, et al. Interleukin-6-knockdown of chimeric antigen receptor-modified T cells significantly reduces IL-6 release from monocytes[J]. Exp Hematol Oncol, 2020, 9: 11. DOI: 10.1186/s40164-020-00166-2.
doi: 10.1186/s40164-020-00166-2 pmid: 32523801 |
[1] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[2] | Zhou Jiamin, Ye Lisha, Wang Guohua. Roles of microRNA in the regulation of tumor-associated macrophage polarization during the remodeling of breast cancer immune microenvironment [J]. Journal of International Oncology, 2020, 47(7): 428-430. |
[3] | Yang Yiting, Cheng Zhongping. The role of inflammatory cytokines in chemoresistance of epithelial ovarian cancer [J]. Journal of International Oncology, 2020, 47(4): 249-251. |
[4] | Xiao Hua, Liu Wu.. Role and mechanism of macrophages modulating the liver microenvironment in digestive tract malignancies liver metastasis [J]. Journal of International Oncology, 2017, 44(12): 940-943. |
[5] | Zhao Zhiwei, Piao Daxun, Jiang Tao, Zhang Zhenan, Wang Jianbing, Jing Qiongyou. Expressions of IL-6 and IL-8 in normal gastric tissue, gastric ulcer and gastric cancer [J]. Journal of International Oncology, 2014, 41(2): 147-149. |
[6] | DING Yi-Hui, ZHANG Kai, HU Yue, LIU Li. Tumor-associated macrophages in immune microenvironment of lung cancer [J]. Journal of International Oncology, 2014, 41(11): 830-833. |
[7] | DONG Shao-Ting, YANG Hong-Li, WANG Shuang. Roles of apoptosis in the normal and tumor microenvironment [J]. Journal of International Oncology, 2013, 40(2): 92-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||