[1] Dillon PM, Chakraborty S, Moskaluk CA, et al. Adenoid cystic carcinoma: a review of recent advances, molecular targets and clinical trials[J]. Head Neck, 2016, 38 (4): 620-627. DOI: 10.1002/hed.23925.
[2] 黄擎, 韩楠男, 刘胜文, 等. 唾液腺腺样囊性癌颈淋巴结转移规律的临床研究[J]. 中国肿瘤临床, 2016, 43(24): 1094-1098. DOI: 10.3969/j.issn.10008179.2016.24.125.
[3] 严斐, 王超, 黎婷, 等. miR21对唾液腺腺样囊性癌细胞增殖和凋亡的影响及机制研究[J]. 中国口腔颌面外科杂志, 2017, 15(3): 209-213. DOI: 10.19438/j.cjoms.2017.03.004.
[4] Chen W, Cao G, Yuan X, et al. Notch1 knockdown suppresses proliferation, migration and metastasis of salivary adenoid cystic carcinoma cells[J]. J Transl Med, 2015, 13: 167. DOI: 10.1186/s12967-015-0520-2.
[5] 梁军, 黄志权, 游云华, 等. HIF1α和VEGF的表达与腺样囊性癌临床病理的相关性研究[J]. 中国口腔颌面外科杂志, 2010, 8(6): 548-554.
[6] Ali S, Yeo JC, Magos T, et al. Clinical outcomes of adenoid cystic carcinoma of the head and neck: a single institution 20year experience[J]. J Laryngol Otol, 2016, 130 (7): 680-685. DOI: 10.1017/S0022215116008124.
[7] 黄应斌, 农晓琳, 杨亦萍, 等. CXCL12/CXCR4在腺样囊性癌中的表达及对预后的价值[J]. 实用口腔医学杂志, 2015, 31(2): 210-214. DOI: 10.3969/j.issn.1001-3733.2015.02.014.
[8] 周宇会, 魏九峰, 李国东, 等. Warburg效应在肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2017, 44(10): 762-766. DOI: 10.3760/cma.j.issn.1673422X.2017.10.010.
[9] 王豪华, 陈秀星, 郭桂芳. 己糖激酶Ⅱ与肿瘤增殖及靶向治疗[J]. 国际肿瘤学杂志, 2017, 44(3): 213-216. DOI: 10.3760/cma.j.issn.1673422X.2017.03.014.
[10] Douglas JG, Laramore GE, AustinSeymour M, et al. Treatment of locally advanced adenoid cystic carcinoma of the head and neck with neutron radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2000, 46(3): 551-557.
[11] Jang S, Patel PN, Kimple RJ, et al. Clinical outcomes and prognostic factors of adenoid cystic carcinoma of the head and neck[J]. Anticancer Res, 2017, 37(6): 3045-3052. DOI: 10.21873/anticanres.11659.
[12] Bell D, Hanna EY. Head and neck adenoid cystic carcinoma: what is new in biological markers and treatment?[J]. Curr Opin Otolaryngol Head Neck Surg, 2013, 21(2): 124-129. DOI: 10.1097/MOO.0b013e32835c05fd.
[13] Oldham RK. Cancer biotherapy: more than immunotherapy[J]. Cancer Biother Radiopharm, 2017, 32(4): 111114. DOI: 10.1089/cbr.2017.28999.old.
[14] Neugent ML, Goodwin J, Sankaranarayanan I, et al. A new perspective on the heterogeneity of cancer glycolysis[J]. Biomol Ther (Seoul), 2018, 26(1): 10-18. DOI: 10.4062/biomolther.2017.210.
[15] Li HM, Yang JG, Liu ZJ, et al. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2017, 36(1): 7. DOI: 10.1186/s13046-016-0481-1.
[16] Chen L, Zhao J, Tang Q, et al. PFKFB3 control of cancer growth by responding to circadian clock outputs[J]. Sci Rep, 2016, 6: 24324. DOI: 10.1038/srep24324.
[17] Gu M, Li L, Zhang Z, et al. PFKFB3 promotes proliferation, migration and angiogenesis in nasopharyngeal carcinoma[J]. J Cancer, 2017, 8(18): 38873896. DOI: 10.7150/jca.19112.
[18] Peng F, Li Q, Sun JY, et al. PFKFB3 is involved in breast cancer proliferation, migration, invasion and angiogenesis[J]. Int J Oncol, 2018, 52(3): 945-954. DOI: 10.3892/ijo.2018.4257.
[19] Clem BF, O′Neal J, Tapolsky G, et al. Targeting 6phosphofructo2kinase (PFKFB3) as a therapeutic strategy against cancer[J]. Mol Cancer Ther, 2013, 12(8): 1461-1470. DOI: 10.1158/1535-7163.MCT-13-0097.
[20] Telang S, Clem BF, Klarer AC, et al. Small molecule inhibition of 6phosphofructo2kinase suppresses T cell activation[J]. J Transl Med, 2012, 10: 95. DOI: 10.1186/1479-5876-10-95. |